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Abstract

The standard dot product, foundational to deep learning, conflates magnitude
and direction, limiting geometric expressiveness and often necessitating additional
architectural components such as activation and normalization layers. We intro-
duce the ⵟ-product (Yat-product), a novel neural operator inspired by physical
inverse-square laws, which intrinsically unifies vector alignment and spatial prox-
imity within a single, non-linear, and self-regulating computation. This operator
forms the basis of Neural-Matter Networks (NMNs), a new class of architectures
that embed non-linearity and normalization directly into the core interaction mech-
anism, obviating the need for separate activation or normalization layers. We
demonstrate that NMNs, and their convolutional and attention-based extensions,
achieve competitive or superior performance on benchmark tasks in image classifi-
cation and language modeling, while yielding more interpretable and geometrically
faithful representations. Theoretical analysis establishes the ⵟ-product as a positive
semi-definite Mercer kernel with universal approximation and stable gradient prop-
erties. Our results suggest a new design paradigm for deep learning: by grounding
neural computation in geometric and physical principles, we can build models that
are not only efficient and robust, but also inherently interpretable.

Code Repository: https://github.com/mlnomadpy/nmn
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type learning, vortex phenomenon, space partitioning, explainable machine learning, deep learning
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1 Introduction

Deep learning practitioners are often forced into a false dichotomy: to measure alignment (via the
dot product) or to measure proximity (via Euclidean distance). Models that require sensitivity to
both must rely on complex, multi-layered architectures to approximate this relationship. This work
challenges that paradigm by introducing a primitive operator that unifies these concepts.
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At the heart of this dichotomy lies the standard model underpinning most deep learning systems:
the dot product for linear interaction, followed by a non-linear activation function. The dot product
serves as the primary mechanism for measuring similarity and interaction between neural units, a
practice dating back to the perceptron’s introduction [52, 38, 24, 14, 19, 33]. Non-linear activation
functions, such as the Rectified Linear Unit (ReLU) [44, 20, 30], are then applied to enable the
network to learn complex patterns, as underscored by the universal approximation theorem [24, 14].
Without such non-linearities, a deep stack of layers would mathematically collapse into an equivalent
single linear transformation, severely curtailing its representational capacity.

However, this ubiquitous approach has a significant cost: a loss of geometric fidelity and the need for
additional components like normalization layers. The dot product itself is a geometrically impover-
ished measure, primarily capturing alignment while conflating magnitude with direction and often
obscuring more complex structural and spatial relationships [10, 11, 4, 61, 17]. Furthermore, the
way current activation functions achieve non-linearity can exacerbate this issue. For instance, ReLU
(f(x) = max(0, x)) maps all negative pre-activations, which can signify a spectrum of relationships
from weak dissimilarity to strong anti-alignment, to a single zero output. This thresholding, while
promoting sparsity, means the network treats diverse inputs as uniformly orthogonal or linearly
independent for onward signal propagation. Such a coarse-graining of geometric relationships leads
to a tangible loss of information regarding the degree and nature of anti-alignment or other neg-
ative linear dependencies. This information loss, coupled with the inherent limitations of the dot
product, highlights a fundamental challenge.

This raises a central question: Can we develop a single computational operator that possesses
intrinsic non-linearity while being inherently geometrically aware, thereby preserving geometric
fidelity without the need for separate activation functions?

This paper proposes an elegant answer: the ⵟ-product (pronounced Yat-product), a novel neural
operator. The intuition behind the ⵟ-product is the unification of alignment and proximity, inspired
by fundamental principles observed in physical systems, particularly the concept of interaction fields
governed by inverse-square laws [29, 45, 15, 18, 8, 9]. In physics, the strength of interactions (like
gravity or electrostatic force) depends not only on intrinsic properties (like mass or charge) but
critically on the inverse square of the distance between entities.

To this end, we introduce the ⵟ-product, defined as:

ⵟ(w, x) := 〈w, x〉2

‖w − x‖2 + ε
(1)

where w is a weight vector, x is an input vector, and ε is a small positive constant for numerical
stability. This operator, inspired by physical inverse-square laws, unifies alignment and proximity
in a single, non-linear computation. See Section 3 for a detailed analysis, comparison with standard
operators, and information-theoretic interpretation.

The ⵟ-product is intrinsically non-linear and self-regulating, and we prove that networks built from
it are universal approximators (see Section 3 and Appendix A.6).
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The ⵟ-product can be naturally extended to convolutional operations for processing structured data
like images. The ⵟ-Convolution (Yat-Conv) is defined as:

ⵟ

∗(W, X) :=

(∑
i,j wijxij

)2

∑
i,j(wij − xij)2 + ε

(2)

where W and X represent local patches (e.g., a convolutional kernel and an input patch, respec-
tively), and wij and xij are their corresponding elements. This formulation allows for patch-wise
computation of the ⵟ-product, integrating its geometric sensitivity into convolutional architectures.

Building upon the ⵟ-product, we propose Neural-Matter Networks (NMNs) and Convolutional
NMNs (CNMNs). NMNs are designed to preserve input topology by leveraging the ⵟ-product’s
geometric awareness and avoiding aggressive, dimension-collapsing non-linearities typically found
in standard architectures. In NMNs, each neuron, through its learned weight vector w, effectively
defines an interaction field. It ”attracts” or responds to input vectors x based on the dual criteria
of learned alignment and spatial proximity, analogous to how bodies with mass create gravitational
fields. This approach aims to maintain critical geometric relationships, fostering more interpretable
models and robust learning.

The primary contributions of this work are:

1. The introduction of the ⵟ-product, a novel, physics-grounded neural operator that unifies
directional sensitivity with an inverse-square proximity measure, designed for geometrically
faithful similarity assessment.

2. The proposal of Neural-Matter Networks (NMNs), a new class of neural architectures based
on the ⵟ-product, which inherently incorporate non-linearity and are designed to preserve
input topology.

3. A commitment to open science through the release of all associated code and models under
the Affero GNU General Public License.

By reconceiving neural computation through the lens of physical interaction fields, this work seeks to
bridge the empirical successes of contemporary machine learning with the structural understanding
and interpretability afforded by principles derived from physics. The remainder of this paper is
organized as follows: Section 5 discusses related work in geometric deep learning and alternative
neural operators. Section 3 details the mathematical formulation of the ⵟ-product and NMNs.
Section ?? provides a discussion of these results, and Section 6 concludes the paper with future
directions.

2 Theoretical Background

2.1 Revisiting Core Computational Primitives and Similarity Measures

The computational primitives used in deep learning are fundamental to how models represent
and process information. This section revisits key mathematical operations and similarity mea-
sures, such as the dot product, convolution, cosine similarity, and Euclidean distance, that form
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the bedrock of many neural architectures. We will explore their individual properties and how
they contribute to tasks like feature alignment, localized feature mapping, and quantifying spatial
proximity. Furthermore, we will delve into the role of neural activation functions in enabling the
non-linear transformations crucial for complex pattern recognition. Understanding these core con-
cepts and their inherent characteristics is crucial for appreciating the motivation behind developing
novel operators, as explored in this work, that aim to capture more nuanced relationships within
data [19].

2.1.1 The Dot Product: A Measure of Alignment

The dot product, or scalar product, remains a cornerstone of neural computation, serving as the
primary mechanism for quantifying the interaction between vectors, such as a neuron’s weights and
its input. For two vectors a = [a1, a2, . . . , an] and b = [b1, b2, . . . , bn], it is defined as:

a · b =
n∑

i=1
aibi = a1b1 + a2b2 + · · · + anbn (3)

Geometrically, the dot product is proportional to the cosine of the angle between the vectors and
their Euclidean magnitudes: a ·b = ‖a‖‖b‖ cos(θ). Its sign indicates the general orientation (acute,
obtuse, or orthogonal angle), and its magnitude reflects the degree of alignment scaled by vector
lengths. In machine learning, dot product scores are pervasively used to infer similarity, relevance,
or the strength of activation. However, as noted in Section 1, its conflation of magnitude and
directional alignment can sometimes obscure more fine-grained geometric relationships, motivating
the exploration of operators that offer a more comprehensive assessment of vector interactions.

2.1.2 The Convolution Operator: Localized Feature Mapping

The convolution operator is pivotal in processing structured data, particularly in Convolutional
Neural Networks (CNNs). It applies a kernel (or filter) across an input to produce a feature map,
effectively an operation on two functions, f (input) and g (kernel), yielding a third that expresses
how one modifies the shape of the other. For discrete signals, such as image patches and kernels, it
is:

(f ∗ g)[n] =
∞∑

m=−∞
f [m]g[n − m] (4)

In CNNs, convolution performs several critical roles:

• Feature Detection: Kernels learn to identify localized patterns (edges, textures, motifs)
at various abstraction levels.

• Spatial Hierarchy: Stacking layers allows the model to build complex feature represen-
tations from simpler ones.

• Parameter Sharing: Applying the same kernel across spatial locations enhances efficiency
and translation equivariance.

The core computation within a discrete convolution at a specific location involves an element-wise
product sum between the kernel and the corresponding input patch, which is, in essence, a dot
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product. Consequently, the resulting activation at each point in the feature map reflects the local
alignment between the input region and the kernel. If an input patch and a kernel are orthogonal
(i.e., their element-wise product sums to zero, akin to a zero dot product if they were vectorized), the
convolution output at that position will be zero, indicating no local match for the feature encoded
by the kernel. This reliance on dot product-like computations means that standard convolutions
primarily assess feature alignment, potentially overlooking other geometric aspects of the data.

2.1.3 Cosine Similarity: Normalizing for Directional Agreement

Cosine similarity refines the notion of alignment by isolating the directional aspect of vector rela-
tionships, abstracting away from their magnitudes. It measures the cosine of the angle between two
non-zero vectors A and B:

cos(θ) = A · B
‖A‖‖B‖

=
∑n

i=1 AiBi√∑n
i=1 A2

i

√∑n
i=1 B2

i

(5)

Scores range from -1 (perfectly opposite) to 1 (perfectly aligned), with 0 signifying orthogonality
(decorrelation). By normalizing for vector lengths, cosine similarity provides a pure measure of
orientation. This is particularly useful when the magnitude of vectors is not indicative of their
semantic relationship, such as in document similarity tasks. While it effectively captures directional
agreement, it explicitly discards information about vector magnitudes and, like the dot product,
does not inherently account for the spatial proximity between the vectors themselves if they are
points in a space [17, 61].

2.1.4 Euclidean Distance: Quantifying Spatial Proximity

In contrast to measures of alignment, Euclidean distance quantifies the ”ordinary” straight-line
separation between two points (or vectors) p = (p1, . . . , pn) and q = (q1, . . . , qn) in an n-dimensional
Euclidean space:

d(p, q) =

√√√√ n∑
i=1

(qi − pi)2 (6)

This metric is fundamental in various machine learning algorithms, including k-Nearest Neighbors
and k-Means clustering, and forms the basis of loss functions like Mean Squared Error. Euclidean
distance measures dissimilarity based on spatial proximity; a smaller distance implies greater simi-
larity in terms of location within the vector space. Unlike cosine similarity, it is sensitive to vector
magnitudes and their absolute positions. However, Euclidean distance alone does not directly
convey information about the relative orientation or alignment of vectors, only their nearness.

The distinct characteristics of these foundational measures, alignment (dot product, cosine similar-
ity) versus proximity (Euclidean distance), highlight an opportunity. These foundational measures
force a choice: one can measure alignment (dot product, cosine similarity) or spatial proximity
(Euclidean distance), but no single, primitive operator in conventional use effectively unifies both.
Neural operators that can synergistically combine these aspects, assessing not only if vectors point
in similar directions but also if they are close in the embedding space, could offer a richer, more
geometrically informed way to model interactions. This perspective underpins the development of
the ⵟ-product introduced in Section 3.
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2.2 The Role and Geometric Cost of Non-Linear Activation

While the core computational primitives provide tools to measure similarity and interaction, their
inherent linearity limits the complexity of functions they can represent. To overcome this, deep
neural networks employ non-linear activation functions. These are the standard method for in-
troducing non-linearity, a necessary step for modeling intricate data patterns. However, this ”fix”
is imperfect, as it introduces its own set of problems, particularly concerning the preservation of
the input data’s geometric integrity. The remarkable expressive power of deep neural networks
hinges on their capacity to model complex, non-linear relationships. This ability to approximate
any continuous function to an arbitrary degree of accuracy is formally captured by the universal
approximation theorem.
Theorem 2.1 (Universal Approximation Theorem [14, 24, 37, 25]). Let σ be any continuous,
bounded, and nonconstant activation function. Let Im denote the m-dimensional unit hypercube
[0, 1]m. The space of continuous functions on Im is denoted by C(Im). Then, for any f ∈ C(Im)
and any ε > 0, there exists an integer N , real constants vi, bi ∈ R, and real vectors wi ∈ Rm for
i = 1, . . . , N , such that the function F : Im → R defined by

F (x) =
N∑

i=1
viσ(wT

i x + bi) (7)

satisfies |F (x) − f(x)| < ε for all x ∈ Im. In simpler terms, a single hidden layer feedforward
network with a sufficient number of neurons employing a suitable non-linear activation function can
approximate any continuous function on compact subsets of Rm to any desired degree of accuracy.

This theorem underscores the critical role of non-linear activation functions. Without such non-
linearities, a deep stack of layers would mathematically collapse into an equivalent single linear
transformation, severely curtailing its representational capacity. Activation functions are thus not
mere auxiliaries; they are the pivotal components that unlock the hierarchical and non-linear feature
learning central to deep learning’s success. They determine a neuron’s output based on its aggre-
gated input, and in doing so, introduce crucial selectivity: enabling the network to preferentially
respond to certain patterns while attenuating or ignoring others.

2.2.1 Linear Separability and the Limitations of the Inner Product

The fundamental computation within a single artificial neuron (perceptron) is an affine transfor-
mation followed by a non-linear activation function σ:

y = σ(〈w, x〉 + b), (8)

where w is the weight vector, x is the input vector, and b is the bias term. The decision boundary
of this neuron is implicitly defined by the hyperplane where the argument to σ is zero:

{x ∈ Rd | 〈w, x〉 + b = 0}. (9)

This hyperplane partitions the input space Rd into two half-spaces. Consequently, a single neuron
can only implement linearly separable functions. This is a direct consequence of the linear nature of
the inner product, which can only define a linear decision boundary. While this allows for efficient
computation, it severely restricts the complexity of functions that can be learned.
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A classic counterexample is the XOR function, whose truth table cannot be satisfied by any single
linear decision boundary. Specifically, for inputs x ∈ {(0, 0), (0, 1), (1, 0), (1, 1)} ⊂ R2, there exist
no w ∈ R2 and b ∈ R such that sign(〈w, x〉 + b) matches the XOR output (0, 1, 1, 0 respectively).
This limitation stems directly from the linear nature of the inner product operation defining the
separating boundary [19].

2.2.2 Non-Linear Feature Space Transformation via Hidden Layers and its Geometric Cost

Multi-layer perceptrons (MLPs) overcome this limitation by cascading transformations. A hidden
layer maps the input x to a new representation h through a matrix-vector product and an element-
wise activation function φ:

h = φ(Wx + b). (10)

Here, W ∈ Rm×d is the weight matrix, b ∈ Rm is the bias vector, and m is the number of hidden
neurons. Each row w>

i of W corresponds to the weight vector of the i-th hidden neuron, computing
hi = φ(〈wi, x〉+ bi). This transforms the input space Rd into a feature space Rm. The introduction
of the non-linear activation function φ is what allows the network to learn non-linear decision
boundaries. However, this gain in expressive power comes at a cost: the potential loss of geometric
fidelity.

2.2.3 Topological Distortions and Information Loss via Activation Functions

While hidden layers using the transformation h = φ(Wx + b) enable the learning of non-linear
functions, the introduction of the element-wise non-linear activation function φ, often crucial for
breaking linearity, can significantly alter the topological and geometric structure of the data repre-
sentation, potentially leading to information loss [19]. This is a critical trade-off: gaining non-linear
modeling capability while potentially discarding valuable geometric information.

Consider the mapping T : Rd → Rm defined by T (x) = φ(Wx+b). The affine part, A(x) = Wx+b,
performs a linear transformation (rotation, scaling, shear, projection) followed by a translation.
While this affine map distorts metric properties (distances and angles, unless W is proportional to
an orthogonal matrix), it preserves basic topological features like connectedness and maps lines to
lines (or points) [19].

However, the subsequent application of a typical non-linear activation φ element-wise often leads
to more drastic topological changes:

1. Non-Injectivity and Collapsing Regions: Many common activation functions render the
overall mapping T non-injective.

• ReLU (φ(z) = max(0, z)): Perhaps the most prominent example. For each hidden
neuron i, the entire half-space defined by {x ∈ Rd | 〈wi, x〉 + bi ≤ 0} is mapped
to hi = 0. Distinct points x1, x2 within this region, potentially far apart, become
indistinguishable along the i-th dimension of the hidden space. This constitutes a sig-
nificant loss of information about the relative arrangement of data points within these
collapsed regions. The mapping is fundamentally many-to-one. For instance, con-
sider two input vectors that are anti-aligned with a neuronś weight vector to different
degrees, one strongly and one weakly. A ReLU activation function would map both
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resulting negative dot products to zero, rendering their distinct geometric opposition
indistinguishable to subsequent layers. This information is irretrievably discarded.

• Sigmoid/Tanh: While smooth, these functions saturate. Inputs z1 = A(x1) and z2 =
A(x2) that are far apart but both fall into the saturation regime (e.g., large positive or
large negative values) will map to h1 ≈ h2. This ’squashing’ effect can merge distinct
clusters from the input space if they map to saturated regions in the hidden space,
again losing discriminative information and distorting the metric structure.

2. Distortion of Neighborhoods: The relative distances between points can be severely dis-
torted. Points close in the input space Rd might be mapped far apart in Rm, or vice-versa
(especially due to saturation or the zero-region of ReLU). This means the local neigh-
borhood structure is not faithfully preserved. Formally, the mapping T is generally not a
homeomorphism onto its image, nor is it typically bi-Lipschitz (which would provide control
over distance distortions).

While these distortions are precisely what grant neural networks their expressive power to warp
the feature space and create complex decision boundaries, they come at the cost of potentially
discarding information present in the original geometric configuration of the data. The network
learns which information to preserve and which to discard based on the optimization objective, but
the mechanism relies on potentially non-smooth or non-injective transformations introduced by φ.
This highlights the conflation of magnitude and direction in the dot product, the information loss
from activation functions, and the lack of a unified measure for proximity and alignment, setting
the stage for the ⵟ-product.

3 Methodology: A Framework for Geometry-Aware Computation

3.1 The ⵟ-Product: A Unified Operator for Alignment and Proximity

The methodological innovations presented in this work are fundamentally rooted in the ⵟ-product,
introduced in Section 1. This single operator serves as the foundation for subsequent layers and
networks.

The ⵟ-product is formally defined as ⵟ(w, x) = (w>x)2

‖w−x‖2+ε [8, 9]. It exhibits a unique form of non-
linearity. Unlike conventional activation functions (e.g., ReLU, sigmoid) which are often applied as
separate, somewhat heuristic, transformations to introduce non-linearity after a linear operation, the
non-linearity in the ⵟ-product arises directly from its mathematical structure. It is a function of the
squared dot product (capturing alignment) and the inverse squared Euclidean distance (capturing
proximity) between the weight vector w and the input vector x. This formulation provides a
rich, explainable non-linearity based on fundamental geometric and algebraic relationships, rather
than an imposed, ”artificial” non-linear mapping. The interaction between the numerator and the
denominator allows for complex responses that are inherently tied to the geometric interplay of the
input vectors.

As visualized in Figure 2, the ⵟ-product creates a potential well around the weight vector w,
reflecting both alignment and proximity.
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Figure 1: Illustration of how non-linear activation functions can distort the geometric structure
of the input data manifold, leading to potential information loss. The original manifold (left) is
transformed into a distorted representation after applying a non-linear activation functions.
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Figure 2: Visualization of the ⵟ-product’s vector field in 2D and 3D spaces. The heatmaps illustrate
how the ⵟ-product, unlike traditional similarity measures, creates a potential well around the weight
vector w, reflecting both alignment and proximity. This figure embodies the paper’s philosophy
of unifying geometric alignment and spatial closeness within a single neural operator, inspired by
physical interaction fields. The resulting landscape demonstrates how the ⵟ-product enables neural
units to act as localized fields of influence, supporting our approach to interpretable, geometry-
aware neural computation.

3.2 Comparison to Standard Similarity and Distance Metrics

To further appreciate the unique characteristics of the ⵟ-product, it is instructive to compare it
with other common similarity or distance metrics [61, 17, 62, 27]:

• Dot Product (w>x): The dot product measures the projection of one vector onto another,
thus capturing both alignment and magnitude. A larger magnitude in either vector, even
with constant alignment, leads to a larger dot product. While useful, its direct sensitivity
to magnitude can sometimes overshadow the pure geometric alignment.

• Cosine Similarity ( w>x
‖w‖‖x‖ ): Cosine similarity normalizes the dot product by the magni-

tudes of the vectors, yielding the cosine of the angle between them. This makes it purely
a measure of alignment, insensitive to vector magnitudes. However, as pointed out, this
means it loses information about true distance or scale; two vectors can have perfect cosine
similarity (e.g., value of 1) even if one is very distant from the other, as long as they point
in the same direction.

• Euclidean Distance (‖w − x‖): This metric computes the straight-line distance between
the endpoints of two vectors. It is a direct measure of proximity. However, it does not
inherently capture alignment. For instance, if w is a reference vector, all vectors x lying
on the surface of a hypersphere centered at w will have the same Euclidean distance to w,
regardless of their orientation relative to w.
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• ⵟ-Product (K
ⵟ

(w, x) = (w>x)2

‖w−x‖2+ε ): The ⵟ-product uniquely combines aspects of both
alignment and proximity in a non-linear fashion. The numerator, (w>x)2, emphasizes
strong alignment (being maximal when vectors are collinear and zero when orthogonal) and
is sensitive to magnitude. The denominator, ‖w−x‖2 + ε, heavily penalizes large distances
between w and x. This synergy allows the ⵟ-product to be highly selective. It seeks points
that are not only well-aligned with the weight vector w but also close to it. Unlike cosine
similarity, it distinguishes between aligned vectors at different distances. Unlike Euclidean
distance alone, it differentiates based on orientation. This combined sensitivity allows the
ⵟ-product to identify matches with a high degree of specificity, akin to locating a point
with ”atomic level” precision, as it requires both conditions (alignment and proximity) to
be met strongly for a high output.

Beyond its geometric interpretation, the ⵟ-product has a profound connection to information theory
when its arguments are probability distributions [51, 5, 42] (see Appendix A.7 for formal results).
In this context, it can be viewed as a signal-to-noise ratio, where the ”signal” (p · q)2 measures
distributional alignment and the ”noise” ‖p − q‖2 quantifies their dissimilarity.

The ⵟ-product’s ability to discern between aligned vectors at varying distances, as well as its
sensitivity to the angle between vectors, is illustrated in Figure 2 and Figure 3. The vector field
generated by the ⵟ-product can be visualized as a potential well around the weight vector w,
where the strength of the interaction diminishes with distance, akin to gravitational or electrostatic
fields. This visualization underscores how the ⵟ-product captures both alignment and proximity in
a unified manner. This combined sensitivity is crucial for tasks where both the orientation and the
relative position of features are important.

3.3 Design Philosophy: Intrinsic Non-Linearity and Self-Regulation

A central hypothesis underpinning our methodological choices is that the ⵟ-product (Section 1)
possesses inherent non-linearity and self-regulating properties that can reduce or eliminate the
need for conventional activation functions (e.g., ReLU, sigmoid, GeLU) and normalization layers
(e.g., Batch Normalization, Layer Normalization).

This philosophy recontextualizes the fundamental components of neural computation. Neuron
weights (w) and input signals (x) are not merely operands in a linear transformation followed by
a non-linear activation; instead, they are conceptualized as co-equal vector entities inhabiting a
shared, high-dimensional feature manifold. Within this framework, each vector can be viewed as
an analogue to a fundamental particle or feature vector, with its constituent dimensions potentially
encoding excitatory, inhibitory, or neutral characteristics relative to other entities in the space. The
ⵟ-product (Section 1) then transcends simple similarity assessment; it functions as a sophisticated
interaction potential, K

ⵟ

(w, x) = (w>x)2

‖w−x‖2+ε , quantifying the ’field effects’ between these vector
entities. This interaction is reminiscent of n-body problems in physics. In machine learning, it
draws parallels with, yet distinctively evolves from, learned metric spaces in contrastive learning,
particularly those employing a triplet loss framework. While triplet loss aims to pull positive pairs
closer and push negative pairs apart in the embedding space, our ⵟ-product seeks a more nuanced
relationship: ’positive’ interactions (high ⵟ-product value) require both strong alignment (high
(w>x)2) and close proximity (low ‖w − x‖2). Conversely, ’negative’ or dissimilar relationships are
not merely represented by distance, but more significantly by orthogonality (leading to a vanishing

11



Figure 3: Comparison of the ⵟ-product with other metrics (dot product, cosine similarity, and
Euclidean distance) in three distinct settings: (a) scaling vectors linearly by a factor s, (b) rotating
the anchor vector, and (c) varying the distance of vectors around the anchor. The ⵟ-product’s
unique sensitivity to both alignment and proximity is highlighted across these scenarios.

numerator), which signifies a form of linear independence and contributes to the system’s capacity
for true non-linear discrimination. Crucially, the non-linearity required for complex pattern recog-
nition is not an external imposition (e.g., via a separate activation function) but is intrinsic to this
interaction potential. The interplay between the squared dot product (alignment sensitivity) and
the inverse squared Euclidean distance (proximity sensitivity) in its formulation directly sculpts a
complex, non-linear response landscape without recourse to auxiliary functions.

Furthermore, this conceptualization of the ⵟ-product as an intrinsic interaction potential suggests
inherent self-regulating properties. The distance-sensitive denominator, ‖w − x‖2 + ε, acts as a
natural dampening mechanism. As the ’distance’ (dissimilarity in terms of position) between inter-
acting vector entities w and x increases, the strength of their interaction, and thus the resultant
activation, diminishes quadratically. This behavior is hypothesized to inherently curtail runaway
activations and stabilize learning dynamics by ensuring that responses are localized and bounded.
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Such intrinsic stabilization contrasts sharply with conventional approaches that rely on explicit nor-
malization layers (e.g., Batch Normalization, Layer Normalization) to manage activation statistics
post-hoc. These layers, while effective, introduce additional computational overhead, can obscure
direct input-output relationships, and sometimes complicate the theoretical analysis of network be-
havior. The ⵟ-product’s formulation, therefore, offers a pathway to architectures where regulatory
mechanisms are embedded within the primary computational fabric of the network.

The inherent non-linearity of the ⵟ-product, coupled with the self-regulating properties suggested
by its formulation (and formally proven in Appendix A.3), are central to our hypothesis that it
can form the basis of powerful and robust neural architectures. These intrinsic characteristics
open avenues for simplifying network design, potentially reducing reliance on or even eliminating
conventional activation functions and normalization layers.

Figure 4: The Vectoverse: Conceptualizing neural computation where weight vectors (w) and
input vectors (x) are akin to fundamental particles (vectoms). The interaction force between them
is quantified by the ⵟ-product, which measures their alignment and proximity, defining a field of
influence.

3.4 Core Building Blocks

Now, we show how the ⵟ-product is operationalized into reusable layers.

3.4.1 The Neural Matter Network (NMN) Layer

The first and simplest application of the ⵟ-product is in Neural-Matter Network (NMN) layers.
These networks represent a departure from traditional Multi-Layer Perceptrons (MLPs) by em-
ploying the non-linear, spatially-aware K

ⵟ

-kernel (derived from the ⵟ-product, see Section 3.1) as
the primary interaction mechanism, instead of the conventional linear projection (〈w, x〉).

An NMN layer transforms an input vector (x ∈ Rd) into an output (here, we consider a scalar
output h for simplicity, extendable to vector outputs h by aggregating the influence of multiple
”neural matter” units). Each unit i is defined by a weight vector (wi ∈ Rd) (acting as a positional
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anchor or prototype) and a bias term (bi ∈ R). The layer output is computed as:

h(x) =
(

s ·
n∑

i=1
(K

ⵟ

(wi, x) + bi)
)

=
(

s ·
n∑

i=1

(
(w>

i x)2

‖wi − x‖2 + ε
+ bi

))
where:

• wi is the weight vector of the i-th NMN unit.

• bi is the bias term for the i-th NMN unit.

• K
ⵟ

(wi, x) represents the ⵟ-product between the weight vector wi and the input x.

• n is the number of NMN units in the layer.

• s is a scaling factor.

This formulation allows each NMN unit to respond based on both alignment and proximity to its
learned weight vector.

A key theoretical guarantee for NMNs is their capacity for universal function approximation [24,
14, 37, 43, 3, 25]. This is significant because, unlike traditional neural networks that depend on
separate, often heuristically chosen, activation functions (e.g., ReLU, sigmoid) to introduce non-
linearity, the approximation power of NMNs is an intrinsic property of the K

ⵟ

-kernel itself. This
finding validates the ⵟ-product as a self-contained computational primitive powerful enough to form
the basis of expressive neural architectures, distinguishing NMNs from classical MLP-based designs
and supporting our core hypothesis that effective, geometry-aware computation is possible without
separate activation functions [10, 11, 4].

3.4.2 Convolutional Neural-Matter Networks (CNMNs) and the ⵟ-Convolution Layer

To extend the principles of Neural-Matter Networks (NMNs) (Section 3.4.1) and the ⵟ-product
(Section 1) to spatially structured data like images, we introduce the ⵟ-Convolution (Yat-Conv)
layer. This layer adapts the ⵟ-product to operate on local receptive fields, analogous to standard
convolutional layers. The ⵟ-Conv operation is defined as:

(ⵟ-Conv(K, I))i,j = ⵟ

∗(K, Ii,j) = 〈K, Ii,j〉2

‖K − Ii,j‖2 + ε
(11)

where K is the convolutional kernel and Ii,j is the input patch at location (i, j) corresponding to
the receptive field of the kernel.

3.4.3 The ⵟ-Attention Mechanism

To extend the ⵟ-product’s application to sequence modeling, we propose the ⵟ-Attention mecha-
nism. This mechanism serves as an alternative to the standard scaled dot-product attention found
in transformer architectures by replacing the dot product used for calculating query-key similarity
with the ⵟ-product (Section 3.1). Given Query (Q), Key (K), and Value (V ) matrices, ⵟ-Attention
is computed as:

ⵟ-Attention(Q, K, V ) = softmax
(
s · (QⵟKT )

)
V (12)
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where the operation QⵟKT signifies applying the ⵟ-product element-wise between query and key
vectors (e.g., the (i, j)-th element is ⵟ(qi, kj)), and s is a scaling factor.

3.5 Architectural Implementations

The development of architectures like AetherResNet and AetherGPT without standard components
(like separate activation and normalization layers) is a deliberate effort to test the hypothesis
outlined in Section 3.3. Key architectural distinctions driven by this philosophy include:

• Fundamental Operator Replacement: The standard dot product is replaced by the
ⵟ-product. This is manifested as ⵟ-Convolution (Equation 11) in convolutional networks
and ⵟ-Attention (Equation 12) in transformer-based models.

• Feed-Forward Networks (FFNs): The FFNs within are constructed using NMN layers
(Section 3.4.1) without explicit non-linear activation functions.

• Omission of Standard Layers: Consistent with this design philosophy, explicit activation
functions and standard normalization layers are intentionally omitted.

Additionally, in all NMN-based architectures, we use a scaling factor s =
(

n
log(1+n)

)α

, where n is
the number of NMN units and α is a learnable parameter. This scaling is designed to adaptively
control the overall magnitude of the layer outputs as a function of network width.

By minimizing reliance on these traditional layers, we aim to explore simpler, potentially more
efficient, and interpretable models where the primary computational operator itself handles these
crucial aspects of neural processing. Furthermore, this principle of substituting the dot product
with the ⵟ-product is not limited to the architectures presented and holds potential for enhancing
other neural network paradigms.

3.5.1 Convolutional NMNs:

AetherResNet is a Convolutional Neural-Matter Network (CNMN) built by replacing all stan-
dard convolutions in a ResNet18 architecture with the ⵟ-Conv layers. Building upon the ⵟ-Conv
layer, CNMNs adapt conventional convolutional architectures by employing the ⵟ-Conv layer as
the primary feature extraction mechanism. The core idea is to leverage the geometric sensitiv-
ity and inherent non-linearity of the ⵟ-product within deep convolutional frameworks. Consistent
with the philosophy of Section 3.3, AetherResNet omits Batch Normalization and activation func-
tions [30, 47, 65, 55]. The design relies on the hypothesis that the ⵟ-product itself provides sufficient
non-linearity and a degree of self-regulation.

In each CNMN residual block, we use a YatConv layer (with input dimension n and output di-
mension m) followed by a linear Conv layer (with input and output dimension m), without any
activation functions or normalization layers (see Fig. 15).

3.5.2 YatFormer: AetherGPT

AetherGPT is a YatFormer model that uses ⵟ-Attention (from Section 3.4.3) for sequence interac-
tion and NMN layers (from Section 3.4.1) in its feed-forward blocks. Building upon the ⵟ-Attention
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mechanism, which forms its cornerstone, we introduce YatFormer, a family of transformer-based
models. As a specific instantiation for our investigations, we developed AetherGPT. This model
adapts the architectural principles of GPT-2. Again, following the philosophy of Section 3.3, it
omits standard normalization and activation layers.

In YatFormer/AetherGPT, we remove the projection layer after the attention mechanism, as the
dot product between the attention map and the value matrix V already serves as a linear projection
(see Fig. 16). Furthermore, in the MLP block, we do not multiply the first layer’s width by 4 as in
standard transformers. Instead, we use a YatNMN layer with input and output dimensions equal to
the embedding dimension, followed by a linear layer, also with input and output dimensions equal
to the embedding dimension (see Fig. 17).

3.6 Output Processing for Non-Negative Scores

The ⵟ-product and its derivatives, such as the K
ⵟ

-kernel, naturally yield non-negative scores. In
many machine learning contexts, particularly when these scores need to be interpreted as probabil-
ities, attention weights, or simply normalized outputs, it is essential to apply a squashing function
to map them to a desired range (e.g., [0, 1] or ensuring a set of scores sum to 1).

Squashing functions for non-negative scores can be broadly categorized into two types:

• Competitive (Vector-Normalizing) Functions: These functions normalize a set of
scores collectively, producing a distribution over the vector. Each output depends on the
values of all dimensions, allowing for competitive interactions among them. This is useful for
attention mechanisms or probability assignments where the sum of outputs is meaningful.

• Individualistic (Per-Dimension) Functions: These functions squash each score in-
dependently, without reference to other values in the vector. Each output depends only
on its corresponding input, making them suitable for bounding or interpreting individual
activations.

Traditional squashing functions, however, present challenges when applied to non-negative inputs:

• Standard Sigmoid Function (σ(x) = 1
1+e−x ): When applied to non-negative inputs

(x ≥ 0), the standard sigmoid function produces outputs in the range [0.5, 1). The minimum
value of 0.5 for x = 0 renders it unsuitable for scenarios where small non-negative scores
should map to values close to 0.

• Standard Softmax Function (softmax(x)i = exi∑
j

exj
): The use of the exponential

function in softmax can lead to hard distributions, where one input value significantly
dominates the output, pushing other probabilities very close to zero. While this is often
desired for classification, it can be too aggressive if a softer assignment of probabilities or
attention is preferred. Additionally, softmax can suffer from numerical instability for large
input values due to the exponentials.

Given these limitations and the non-negative nature of ⵟ-product scores, we consider alternative
squashing functions more suited to this domain:
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• softermax (Competitive): This function normalizes a score xk (optionally raised to a
power n > 0) relative to the sum of a set of non-negative scores {xi} (each raised to n),
with a small constant ε > 0 for numerical stability. It is defined as:

softermaxn(xk, {xi}) = xn
k

ε +
∑

i xn
i

(13)

Unlike softmax, softermax does not use exponentials, which avoids numerical instability for
large inputs and provides a more direct, interpretable translation of the underlying scores
into a normalized distribution. The power n controls the sharpness of the distribution:
n = 1 recovers the original Softermax, while n > 1 makes the distribution harder (more
peaked), and 0 < n < 1 makes it softer.

• soft-sigmoid (Individualistic): This function squashes a single non-negative score x ≥ 0
(optionally raised to a power n > 0) into the range [0, 1). It is defined as:

soft-sigmoidn(x) = xn

1 + xn
(14)

The power n modulates the softness: higher n makes the function approach zero faster for
large x, while n < 1 makes the decay slower.

• soft-tanh (Individualistic): This function maps a non-negative score x ≥ 0 (optionally
raised to a power n > 0) to the range [−1, 1) by linearly transforming the output of soft-
sigmoid. It is defined as:

soft-tanhn(x) = 2 · (soft-sigmoidn(x) − 1
2 ) = xn − 1

1 + xn
(15)

The power n again controls the transition sharpness: higher n makes the function approach
−1 more quickly for large x.

Figure 5: Visualization of the softermax, soft-sigmoid, and soft-tanh functions. These functions are
designed to handle non-negative inputs from the ⵟ-product and its derivatives, providing appropri-
ate squashing mechanisms that maintain sensitivity across the range of non-negative inputs.

These functions are particularly well-suited for the outputs of ⵟ-product-based computations, as
they maintain sensitivity across the range of non-negative inputs while avoiding the pitfalls of
standard activation functions [44, 20, 30].
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The main role of these squashing functions can be categorized into two main categories:

• Collective Communication and Space Splitting: The softermax function allows for
a comparative analysis of scores, reflecting their orthogonality and spatial proximity to an
input vector. A higher score indicates that a vector is more aligned and closer to the input,
while a lower score suggests greater orthogonality. This facilitates a competitive interaction
where vectors vie for influence based on their geometric relationship with the input. The
power parameter n, analogous to the temperature in softmax, controls the sharpness of the
gravitational potential well’s slope.

• Individual Score Squashing: The soft-sigmoid and soft-tanh functions are used to
squash individual non-negative scores into a bounded range, typically [0, 1) for soft-sigmoid
and [−1, 1) for soft-tanh. They are particularly useful when the output needs to be inter-
preted as a probability or when a bounded response is required, as each score is processed
independently of the others. The power parameter controls the steepness of the function,
while the minimum value can be interpreted as an orthogonality score.

3.7 Mathematical Guarantees of the ⵟ-Product and NMNs

The ⵟ-product and the resulting Neural-Matter Networks (NMNs) are supported by several key
mathematical properties, each formally proven in the appendices:

• Mercer Kernel Property: The ⵟ-product is a symmetric, positive semi-definite Mercer
kernel, enabling its use in kernel-based learning methods (see Appendix A.2).

• Universal Approximation: NMNs with ⵟ-product activations can approximate any con-
tinuous function on a compact set, establishing their expressive power (see Appendix A.6).

• Self-Regulation: The output of a ⵟ-product neuron is naturally bounded and converges to
a finite value as input magnitude increases, ensuring stable activations (see Appendix A.3).

• Stable Gradient: The gradient of the ⵟ-product with respect to its input vanishes for
distant inputs, preventing large, destabilizing updates from outliers (see Appendix A.5).

• Information-Theoretic Duality: The ⵟ-product unifies geometric and information-
theoretic notions of similarity and orthogonality, with formal theorems connecting it to
KL divergence and cross-entropy (see Appendix A.7).

4 Results and Discussion

The ⵟ-product’s non-linearity is not merely a mathematical curiosity; it has practical implications
for neural computation. By integrating alignment and proximity into a single operator, the ⵟ-
product allows for more nuanced feature learning. It can adaptively respond to inputs based on
their geometric relationships with learned weight vectors, enabling the network to capture complex
patterns without the need for separate activation functions.

Consider the classic XOR problem, which is not linearly separable and thus cannot be solved by a
single traditional neuron (linear perceptron). The inputs are (0, 0) → 0, (0, 1) → 1, (1, 0) → 1, and
(1, 1) → 0. A single ⵟ-product unit can, however, solve this. Let the weight vector be w = [1, −1]>.
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For x = [0, 0]>: w>x = 0, so K
ⵟ

(w, x) = 0.

For x = [1, 1]>: w>x = 1 − 1 = 0, so K
ⵟ

(w, x) = 0.

For x = [0, 1]>: w>x = −1. ‖w − x‖2 = ‖[1, −2]>‖2 = 5. So K
ⵟ

(w, x) = (−1)2

5+ε = 1
5+ε > 0.

For x = [1, 0]>: w>x = 1. ‖w − x‖2 = ‖[0, −1]>‖2 = 1. So K
ⵟ

(w, x) = 12

1+ε = 1
1+ε > 0.

Thus, the ⵟ-product unit with an appropriate weight vector (such as one where components have
opposite signs, reflecting the XOR logic) naturally separates the XOR patterns, effectively acting
as a mathematical kernel. We have formally proven that the ⵟ-product is a valid Mercer kernel in
Appendix A.2 [39, 21, 40, 56, 12, 28].

To understand its behavior during learning, we analyze its gradient. A key property for stable
training is that the gradient with respect to the input, ∇xK

ⵟ

, diminishes as the input x moves
far from the weight vector w. This ensures that distant outliers do not cause large, destabi-
lizing updates. We have formally proven this property in Appendix A.5, demonstrating that
lim‖x‖→∞ ‖∇xK

ⵟ

(w, x)‖ = 0.

The presence of ε in the denominator ensures that the derivative remains well-defined, avoiding
division by zero and contributing to numerical stability. This contrasts with activation functions
like ReLU, which have a derivative of zero for negative inputs, potentially leading to ”dead neurons.”
The smooth and generally non-zero gradient of the ⵟ-product is hypothesized to contribute to more
stable and efficient learning dynamics, reducing the reliance on auxiliary mechanisms like complex
normalization schemes. The non-linearity is thus not an add-on but an intrinsic property derived
from the direct mathematical interaction of vector projection (alignment, via the (w>x)2 term) and
vector distance (proximity, via the ‖w − x‖2 + ε term). This provides a mathematically grounded
basis for feature learning, as the unit becomes selectively responsive to inputs that exhibit specific
geometric relationships, both in terms of angular alignment and spatial proximity, to its learned
weight vector w. Consequently, w can be interpreted as a learned feature template or prototype
that the unit is tuned to detect, with the ⵟ-product quantifying the degree of match in a nuanced,
non-linear fashion.

The gradient of the ⵟ-product, being responsive across the input space, actively pushes the neuron’s
weights away from configurations that would lead to a zero output (neuron death, e.g., at an input
of [0, 0] for this problem if weights were also near zero). This contrasts with a simple dot product
neuron where the gradient might vanish or lead to a global minimum at zero output for certain
problems. For instance, when considering gradient-based optimization, the loss landscape ”seen” by
the ⵟ-product neuron in the XOR context would exhibit a peak or high loss at [0, 0] (if that were the
target for non-zero outputs), encouraging weights to move towards a state that correctly classifies.
Conversely, a simple dot product neuron might present a loss landscape where a gradient-based
optimizer could find a stable (but incorrect) minimum at zero output. This ability to avoid such
dead zones and actively shape the decision boundary makes it helpful to solve problems like XOR
with a single unit, leveraging its inherent non-linearity as a mathematical kernel.

Conceptually, the decision boundary or vector field generated by a simple dot product neuron is
linear, forming a hyperplane that attempts to separate data points. In contrast, the ⵟ-product
generates a more complex, non-linear vector field. This field can be visualized as creating a series
of potential wells or peaks centered around the weight vector w, with the strength of influence
decaying with distance. The condition w>x = 0 defines a ”valley” of zero output where vectors are
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Figure 6: Comparison of the loss landscape for a simple dot product neuron and a ⵟ-product neuron.
The dot product neuron has a stable minimum at zero output which doesn’t solve the xor problem
and cause the neuron death, while the ⵟ-product neuron resides in a valley of orthogonality, allowing
it to avoid dead zones and actively shape the decision boundary. This illustrates the ⵟ-product’s
ability to solve problems like XOR with a single unit, leveraging its inherent non-linearity as a
mathematical kernel.

orthogonal to the weight vector. This structure allows for more nuanced and localized responses,
akin to a superposition of influences rather than a single linear division, enabling the capture of
intricate patterns in the data.

4.1 Your Neuron is a secret Vortex

We begin by analyzing the fundamental learning dynamics that emerge in both conventional and our
proposed architectures. In artificial intelligence, competitive learning manifests in various forms,
whether through linear classification using dot products or clustering using Euclidean distances.
Both approaches involve partitioning the feature space between neurons, which can be conceptu-
alized as prototype learning where each neuron claims a territorial “field” in the representation
space.
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Figure 7: Comparison of decision boundaries formed by a conventional linear model (left) and our
proposed ⵟ-product method (right). The conventional model’s prototypes grow unbounded, while
our method learns more representative prototypes that better capture class distributions.

In this experiment, we analyze the learning dynamics of a linear model on a synthetic dataset,
comparing the formation of decision boundaries by conventional neurons employing standard dot
products with those generated by our proposed ⵟ-product method.

In a conventional linear model, the logit for each class i is computed as:

zi = wT
i x (16)

where wi is the weight vector (prototype) for class i, and x is the input vector. The softmax
function then normalizes these logits into probabilities:

pi = exp(zi)∑C
j=1 exp(zj)

(17)

The decision boundary between any two classes i and j forms a linear hyperplane defined by:

(wi − wj)T x = 0 (18)

During training via gradient descent, each prototype wi is updated to maximize its alignment with
the data distributions of its assigned class. This optimization process often leads to an unbounded
increase in prototype magnitudes, as ‖wi‖ → ∞ directly amplifies the logit zi, thereby increasing
the model’s confidence. However, the decision boundaries themselves remain linear hyperplanes,
creating rigid geometric separations in the feature space.

In contrast, the non-linear ⵟ-product allows neurons to learn more representative prototypes for
each class, leading to the formation of more nuanced decision boundaries. For the ⵟ-product, the
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response of neuron i to input x is given by:

zi = ⵟ(wi, x) = 〈wi, x〉2

‖wi − x‖2 + ε
(19)

This formulation embodies the signal-to-noise ratio interpretation established in our theoretical
framework (Appendix A.7), where the squared dot product 〈wi, x〉2 represents the ”signal” of
distributional alignment, and ‖wi − x‖2 quantifies the ”noise” of dissimilarity. The ⵟ-product thus
provides a principled geometric measure that balances similarity and proximity in a theoretically
grounded manner.

Similarly to conventional neurons, the ⵟ-product outputs are normalized using the softmax function:

pi = exp(zi)∑C
j=1 exp(zj)

=
exp

(
〈wi,x〉2

‖wi−x‖2+ε

)
∑C

j=1 exp
(

〈wj ,x〉2

‖wj−x‖2+ε

) (20)

This softmax normalization serves a crucial role in the competitive dynamics of ⵟ-product neurons.
The softmax function acts as a transformation that maps from the real-valued ⵟ-product responses
zi ∈ R to a delta distribution δi in probability space. This softmax distribution over ⵟ-product
scores can be interpreted as the posterior responsibility of each prototype (neuron) for the input,
drawing a direct connection to Gaussian Mixture Models (GMMs) and expectation-maximization
frameworks.

The softmax can also be viewed as computing a categorical distribution proportional to exponen-
tiated log-likelihoods, which in this case derive from a geometric ⵟ-product similarity rather than
traditional probabilistic assumptions. This bridges the gap between probabilistic views (such as
EM algorithms and classification) and our geometric formulation, providing a principled foundation
for the competitive dynamics.

As training progresses and the differences between ⵟ-product responses become more pronounced,
the softmax transformation approaches a delta distribution, where the winning neuron (with the
highest ⵟ-product response) approaches probability 1 while all others approach 0. This winner-
take-all mechanism enables competitive learning dynamics where each neuron competes to ”take
over” regions of the input space based on their vortex-like attraction fields.

The decision boundary between two neurons with prototypes wi and wj is defined by the condition
where their responses are equal:

ⵟ(wi, x) = ⵟ(wj , x) (21)

Expanding this condition:
〈wi, x〉2

‖wi − x‖2 + ε
= 〈wj , x〉2

‖wj − x‖2 + ε
(22)

Cross-multiplying and rearranging:

〈wi, x〉2(‖wj − x‖2 + ε) = 〈wj , x〉2(‖wi − x‖2 + ε) (23)

This equation defines a complex, non-linear decision boundary that depends on both the alignment
(through the squared dot products) and the proximity (through the squared distances) between
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the input and each prototype. Unlike the linear hyperplane formed by conventional dot product
neurons, the ⵟ-product creates what we term a vortex phenomenon or gravitational potential well
around each prototype.

The space partitioning behavior of the ⵟ-product exhibits several key properties that create this
vortex-like effect:

• Gravitational Attraction: The inverse-square relationship in the denominator creates a
field where points are more strongly attracted to nearby prototypes, similar to gravitational
fields in physics.

• Alignment Amplification: The squared dot product in the numerator creates a strong
response for well-aligned inputs, while the vortex effect pulls data points toward the pro-
totype center.

• Bounded Potential Wells: Each neuron creates a localized potential well with bounded
depth, preventing the unbounded growth seen in linear neurons. This boundedness is
theoretically guaranteed by the Minimal and Maximal Similarity Characterizations (The-
orems A.7 and A.8), which establish that 0 ≤ ⵟ(wi, x) ≤ ∞ with well-defined extremal
conditions.

• Curved Decision Boundaries: The resulting decision boundaries are non-linear curves
that wrap around the data distribution, creating vortex-like territorial regions for each
neuron.

This vortex phenomenon allows each ⵟ-product neuron to create a territorial ”field” in the represen-
tation space, where data points are pulled toward the dominant prototype based on both similarity
and proximity metrics. The field each neuron occupies can indeed be considered a vortex, where
the strength of attraction follows an inverse-square law, creating more natural and geometrically
faithful decision boundaries.

The combination of the ⵟ-product’s vortex-like attraction and the softmax’s competitive normal-
ization creates a powerful space partitioning mechanism. Each neuron’s vortex field competes with
others through the softmax transformation, and the neuron with the strongest local attraction (high-
est ⵟ-product response) wins that region. Over time, this leads to a natural tessellation of the input
space, where each neuron’s territory is defined by the regions where its vortex field dominates. The
softmax transformation RC → ∆C−1 (where ∆C−1 is the (C − 1)-dimensional probability simplex)
ensures that these territorial boundaries are sharp and well-defined, transforming the continuous
real-valued responses into discrete delta distributions that clearly assign each input to its dominant
neuron.

Orthogonality and Competitive Dynamics: The competitive learning behavior observed in
practice is theoretically grounded in our Orthogonality-Entropy Connection. When two prototypes
wi and wj develop disjoint support regions, they become Euclidean orthogonal (wi ⊥ wj), which
corresponds to:

ⵟ(wi, wj) = 0 and H(wi, wj) = ∞ (24)

This geometric-probabilistic duality explains why neurons naturally develop specialized, non-
overlapping representations during competitive learning. The infinite cross-entropy between or-
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thogonal prototypes creates strong pressure for territorial separation, preventing the collapse to
identical representations that can plague conventional competitive learning systems.

These prototypes are optimized to maximize parallelism and minimize distance to all points within
their class distribution. When minimizing distance becomes challenging, the properties of the ⵟ-
product enable the prototype to exist in a superposition state, prioritizing the maximization of
parallelism over strict distance minimization.

4.2 Do you even MNIST bro?

Having established the theoretical foundation of the vortex phenomenon in Section 4.1, we now
validate these insights on the canonical MNIST dataset. This experiment serves as a bridge be-
tween our geometric theory and practical applications, demonstrating how the vortex-like territorial
dynamics translate into improved prototype learning on real data.

In our MNIST experiments, the network consists of C = 10 neurons, each corresponding to one
of the digit classes (0–9). Each neuron’s prototype is represented as a vector wi ∈ R784, where
i = 1, . . . , 10. The input images x ∈ R784 are obtained by flattening the original 28 × 28
pixel images, so each neuron’s prototype wi has the same dimensionality as the input, i.e.,
wi = (wi,1, wi,2, . . . , wi,784). This structure allows each neuron to learn class-specific features in the
full image space.

The MNIST dataset provides an ideal testbed for examining the vortex phenomenon because its 10-
class structure allows clear visualization of how different neurons compete for territorial control in
the feature space. We specifically investigate whether the bounded attraction fields and territorial
partitioning predicted by our theory manifest as improved prototype quality and learning dynamics
in practice.

Experimental Design: We train both conventional linear classifiers and our ⵟ-product networks
on MNIST, analyzing three key aspects that directly relate to the vortex phenomenon:

1. Prototype Evolution Dynamics: How do prototypes evolve during training under dif-
ferent competitive mechanisms?

2. Territorial Boundary Formation: Do we observe the predicted non-linear decision
boundaries and vortex-like attraction fields?

3. Representational Quality: How does the theoretical prediction of bounded, concentrated
prototypes translate to interpretability?

The prototype evolution during training reveals the fundamental differences between conventional
unbounded growth and our bounded vortex dynamics. Figure 9 shows the final learned prototypes,
providing striking empirical confirmation of our vortex theory. The conventional linear model
produces prototypes that exhibit the unbounded growth predicted by our analysis—these prototypes
become increasingly diffuse and less interpretable as they grow to maximize margin separation. The
resulting digit representations are blurry and lack the fine-grained features necessary for robust
classification.

In stark contrast, the ⵟ-product method produces prototypes that perfectly exemplify the bounded
vortex fields described in our theory. Each digit prototype exhibits:
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• Localized Concentration: Sharp, well-defined features that correspond to the bounded
potential wells predicted by our Minimal and Maximal Similarity Characterizations (The-
orems A.7 and A.8)

• Class-Specific Territorial Structure: Each prototype captures unique digit charac-
teristics, reflecting the competitive territorial dynamics where each neuron’s vortex field
dominates specific regions of the input space

• Geometric Fidelity: The prototypes maintain geometric coherence with actual digit
structure, confirming that the signal-to-noise ratio optimization preserves meaningful visual
patterns

Figure 8: Prototypes learned by the conventional linear model (top) and our proposed ⵟ-product
method (bottom) on the MNIST dataset. The prototypes from our method are more distinct and
representative of the digit classes, capturing finer details and class-specific characteristics.

Superposition and Prototype Inversion: A unique property of the ⵟ-product neuron is its
ability to exist in a superposition state, which can be empirically demonstrated by inverting the
learned prototype. Specifically, if w is a learned prototype, we consider the effect of replacing w
with −w (i.e., multiplying by −1) at test time, without any retraining. For a conventional dot
product neuron, this operation flips the sign of the logit:

z = wT x −→ z′ = (−w)T x = −z (25)

This sign flip causes the softmax output to assign high probability to the incorrect class, resulting
in a dramatic drop in accuracy (from 93% to nearly 0% in our MNIST experiments).

In contrast, for the ⵟ-product neuron, the response is:

z = ⵟ(w, x) = (wT x)2

‖w − x‖2 + ε
(26)

Multiplying w by −1 leaves the numerator unchanged, since (−w)T x = −wT x and (−wT x)2 =
(wT x)2. The denominator is also unchanged, as ‖ − w − x‖2 = ‖w + x‖2, which is symmetric
with respect to the data distribution. As a result, the ⵟ-product neuron’s accuracy remains nearly
unchanged (dropping only slightly from 92% to 89%), demonstrating its robustness to prototype
inversion and its ability to represent solutions in a superposition state.
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This property allows the ⵟ-product neuron to yield two valid solutions to the same dataset without
retraining, a phenomenon not observed in conventional dot product neurons. The table below
summarizes the empirical results:

Table 1: Test accuracy on MNIST before and after prototype inversion (w → −w) for dot product
and ⵟ-product (yat) neurons.

Neuron Type Original Prototype Inverted Prototype (w → −w)
Dot Product 91.88% ≈0.01%
ⵟ-Product (Yat) 92.18% 87.87%

4.3 Aether-GPT2: The Last Unexplainable Language Model

To demonstrate the versatility of our approach beyond vision tasks, we implement Aether-GPT2,
incorporating the ⵟ-product architecture into the GPT2 framework for language modeling. We
compare the perplexity scores between our Aether-GPT2 and the standard GPT2 architecture
across multiple text corpora.

Table 2: Final validation loss comparison between GPT2 and Aether-GPT2 on 600m tokens of
Fineweb.

Dataset GPT2 Aether-GPT2
Fineweb 2.69 2.83

The results in Table 2 demonstrate that Aether-GPT2 achieves a validation loss competitive with the
standard GPT-2 baseline. While the loss is marginally higher, it is critical to note that Aether-GPT2
attains this performance despite its simplified design, which entirely omits dedicated activation
functions and normalization layers. This outcome highlights a promising trade-off between raw
performance and architectural simplicity, efficiency, and the inherent interpretability afforded by
the ⵟ-product. These findings establish Aether-GPT2 as a successful proof-of-concept, suggesting
that the ⵟ-product can serve as a viable alternative to conventional neural network components.

Table 3: Aether-GPT2 Experiment Card

Parameter Value
Optimizer Novograd
Learning Rate 0.003
Batch Size 32
Embedding Dimension 768
MLP Dimension 768 (No x4)
Vocabulary Size 50,257
Number of Heads 12
Number of Blocks 12
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Figure 9: Loss Curve over the 600m tokens from fineweb trained on Kaggle TPU v3, Linear model
is using standard GPT2 achitecture.

The results demonstrate that Aether-GPT2 consistently achieves close loss, indicating its ability to
learn non-linearity without the need for activation functions.

The performance can be attributed to the ⵟ-product’s ability to capture more nuanced relationships
between tokens, allowing the model to better understand contextual dependencies and semantic
similarities in natural language.

5 Related Work

5.1 Inverse-Square Laws

The inverse-square law, where a quantity or intensity is inversely proportional to the square of the
distance from its source, is a fundamental principle observed across numerous scientific disciplines
[29]. This relationship signifies that as the distance from a source doubles, the intensity reduces to
one-quarter of its original value.

In classical physics, this law is foundational. Newton’s Law of Universal Gravitation describes the
force between two masses [45], and Coulomb’s Law defines the electrostatic force between charges
[15]. The intensity of electromagnetic radiation, such as light, and the intensity of sound from a
point source also diminish according to this principle. Gauss’s Law offers a unifying mathematical
framework for these phenomena in fields like electromagnetism and gravitation, connecting them
to the property that the divergence of such fields is zero outside the source [18]. Similarly, thermal
radiation intensity from a point source adheres to this law [41].

The inverse-square law’s influence extends significantly into engineering and applied sciences.
In health physics, it is critical for radiation protection, governing the attenuation of ionizing radia-
tion [31]. Photometry applies it to illumination engineering for lighting design [50]. In telecommuni-
cations, it underpins the free-space path loss of radio signals, as described by the Friis transmission
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equation [49], while radar systems experience an inverse fourth-power relationship due to the sig-
nal’s two-way travel [60]. Seismology observes that seismic wave energy attenuates following this
law [1], and in fluid dynamics, the velocity field from a point source in incompressible, irrotational
flow also demonstrates an inverse-square dependence [6].

Beyond the physical sciences, analogous concepts are found in information theory, data science,
and social sciences. For instance, the Tanimoto coefficient, used in molecular similarity analysis
[62]), and the Jaccard index, a metric for set similarity [27], exhibit mathematical properties akin
to inverse-square decay when viewed in feature space geometry. In economics, the gravity model
of trade frequently employs an inverse-square (or similar power law) relationship to predict trade
flows between entities, based on their economic ”mass” (e.g., GDP) and the distance separating
them [2], illustrating how these physical principles can offer insights into complex socio-economic
phenomena.

5.2 Learning with Kernels

Learning with kernels has significantly influenced machine learning by enabling algorithms to handle
complex, non-linear patterns efficiently. The introduction of Support Vector Machines (SVMs) [12]
laid the foundation for kernel-based learning, leveraging the kernel trick to implicitly map data
into high-dimensional spaces. Schölkopf formalized kernel methods, expanding their applicability
to various tasks [56].

Key advancements include Kernel PCA [57] for non-linear dimensionality reduction and Gaussian
Processes [67] for probabilistic modeling. Applications like Spectral Clustering[46] and One-Class
SVM [58] highlight the versatility of kernel methods.

To address computational challenges, techniques like the Nyström method [66] and Random Fourier
Features [48] have improved scalability. Recent work, such as the Neural Tangent Kernel (NTK) [28],
bridges kernel methods and deep learning, offering insights into the dynamics of neural networks.

Furthermore, many prominent kernel functions, such as the Gaussian Radial Basis Function (RBF)
kernel [7], explicitly define similarity based on the Euclidean distance between data points, effec-
tively giving higher weight to nearby points. This inherent sensitivity to proximity allows models
like Support Vector Machines with RBF kernels or Gaussian Processes to capture local structures
in the data.

While these methods leverage distance to inform the kernel matrix or model covariance, our research
explores a more direct architectural integration of proximity. We propose a novel neural operator
where an inverse-square law with respect to feature vector distance is fundamentally incorporated
into the neuron’s computation, in conjunction with measures of feature alignment. This approach
differs from traditional kernel methods where the kernel function primarily serves to define a sim-
ilarity measure for algorithms that operate on pairs of samples, rather than defining the intrinsic
operational characteristics of individual neural units themselves.

5.3 Deep Learning

The landscape of deep learning is characterized by a continuous drive towards architectures and neu-
ral operators that offer enhanced expressivity, computational efficiency, and improved understand-
ing of underlying data structures. Convolutional Neural Networks (CNNs) remain a foundational
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paradigm, particularly in vision, lauded for their proficiency in extracting hierarchical features [32].
However, the pursuit of alternative and complementary approaches remains vibrant.

A significant trajectory involves architectures leveraging dot-product mechanisms, most promi-
nently exemplified by the Transformer architecture and its self-attention mechanism [64]. This has
spurred developments like Vision Transformers (ViTs) [16], and models such as MLP-Mixer [63]
and gMLP [35] which, while simplifying or eschewing self-attention, still rely on operations like
matrix multiplication for feature mixing, demonstrating competitive performance, particularly in
computer vision.

The quest for capturing intricate data relationships has also led to renewed interest in Polynomial
Neural Networks. These networks incorporate polynomial expansions of neuron inputs, enabling
the modeling of higher-order correlations [26, 36], offering a different inductive bias compared to
standard linear transformations followed by activation functions. Concurrently, Fourier Networks,
such as FNet [34], explore the frequency domain, replacing spatial convolutions or attention with
Fourier transforms for token or feature mixing, presenting an alternative for global information
aggregation with potential efficiency gains.

Despite these advancements, a persistent challenge in deep learning is interpretability. The complex
interplay of numerous parameters and non-linear activation functions (e.g., ReLU [44], sigmoid,
tanh) often renders the internal decision-making processes of deep models opaque [42]. These
diverse approaches highlight a shared pursuit for more expressive primitives. Our work contributes
to this by proposing an operator that achieves non-linearity not through polynomial expansion
or frequency-domain transformation, but through a unified measure of geometric alignment and
proximity.

6 Conclusion

Perhaps artificial intelligence’s greatest limitation has been our stubborn fixation on the human
brain as the pinnacle of intelligence. The universe itself, governed by elegant and powerful laws,
demonstrates intelligence far beyond human cognition. These fundamental laws, which shape galax-
ies and guide quantum particles, represent a deeper form of intelligence that we have largely ignored
in our pursuit of AI.

In this paper, we challenge the conventional AI paradigm. We broke free from biological metaphors
by drawing direct inspiration from inverse-square law interactions in physics. The ⵟ-product, with
its inherent non-linearity and geometric sensitivity, allows for a more nuanced understanding of
vector interactions, capturing both alignment and proximity in a single operation. This approach
not only simplifies the architecture of neural networks but also enhances their interpretability and
robustness.
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Disclaimer

This research provides foundational tools to enhance the safety, explainability, and interpretability
of AI systems. These tools are vital for ensuring precise human oversight, a prerequisite to prevent
AI from dictating human destiny.

The authors disclaim all liability for any use of this research that contradicts its core objectives
or violates established principles of safe, explainable, and interpretable AI. This material is pro-
vided ”as is,” without any warranties. The end-user bears sole responsibility for ensuring ethical,
responsible, and legally compliant applications.

We explicitly prohibit any malicious application of this research, including but not limited to,
developing harmful AI systems, eroding privacy, or institutionalizing discriminatory practices. This
work is intended exclusively for academic and research purposes.

We encourage active engagement from the open-source community, particularly in sharing empirical
findings, technical refinements, and derivative works. We believe collaborative knowledge genera-
tion is essential for developing more secure and effective AI systems, thereby safeguarding human
flourishing.

Our hope is that this research will spur continued innovation in AI safety, explainability, and
interpretability. We expect the global research community to use these contributions to build AI
systems demonstrably subordinate to human intent, thus mitigating existential risks. All researchers
must critically evaluate the far-reaching ethical and moral implications of their work.

License

This work is licensed under the Affero GNU General Public License (AGPL) v3.0. The AGPL is
a free software license that ensures end users have the freedom to run, study, share, and modify
the software. It requires that any modified versions of the software also be distributed under the
same license, ensuring that the freedoms granted by the original license are preserved in derivative
works. The full text of the AGPL v3.0 can be found at https://www.gnu.org/licenses/agpl-3.
0.en.html. By using this work, you agree to comply with the terms of the AGPL v3.0.
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A Appendix

A.1 Preliminary

• Cauchy-Schwarz Inequality [22]: Used to bound the dot product and characterize equal-
ity conditions for identical vectors/distributions.

• Properties of KL Divergence and Cross-Entropy [13]: Used to show divergence for
disjoint supports in probability distributions.

• Mercer’s Theorem [39, 59]: Establishes that a symmetric, positive semi-definite kernel
defines a valid reproducing kernel Hilbert space (RKHS).

• Schur Product Theorem [22]: States that the Hadamard (element-wise) product of two
positive semi-definite matrices is also positive semi-definite.

• Bochner’s Theorem [54]: Characterizes translation-invariant kernels as positive definite
if and only if their Fourier transform is non-negative.

• Universal Approximation Theorem [14, 23]: Guarantees that neural networks with
suitable activation functions or kernels can approximate any continuous function on a com-
pact set.

• Universality of Polynomial and Translation-Invariant Kernels [40]: Used to argue
that both the squared polynomial kernel and the translation-invariant kernel are universal.

• Laplace Transform/Integral Representation [53]: Used to express the inverse
quadratic kernel as an integral over Gaussians, supporting the Bochner argument.

A.2 Proof of Mercer’s Condition for the ⵟ-product

Theorem A.1. The ⵟ-product, defined as K(w, x) = 〈w,x〉2

‖w−x‖2+ε , is a Mercer kernel.

Proof. To prove that the ⵟ-product is a Mercer kernel, we must show that it is symmetric and
positive semi-definite [39, 59].

1. Symmetry

The kernel is defined as:
K(w, x) = 〈w, x〉2

‖w − x‖2 + ε
(27)

To check for symmetry, we evaluate K(x, w):

K(x, w) = 〈x, w〉2

‖x − w‖2 + ε
(28)

Given that the dot product is commutative, 〈w, x〉 = 〈x, w〉, and thus 〈w, x〉2 = 〈x, w〉2. Also, the
squared Euclidean distance is symmetric: ‖w − x‖2 = (w − x) · (w − x) = w · w − 2w · x + x · x =
‖x − w‖2. Therefore, K(w, x) = K(x, w), and the kernel is symmetric.
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2. Positive Semi-Definiteness

A kernel K(w, x) is positive semi-definite (PSD) if for any finite set of points {xi}N
i=1 ⊂ Rd and

any coefficients {ci}N
i=1 ⊂ R, the following condition holds:

N∑
i=1

N∑
j=1

cicjK(xi, xj) ≥ 0

This is equivalent to stating that the Gram matrix G, where Gij = K(xi, xj), is positive semi-
definite.

The proof of positive semi-definiteness is established by decomposing the kernel and leveraging the
Schur product theorem [22] in conjunction with Bochner’s theorem [54] for translation-invariant
kernels. The proof proceeds by showing that the ⵟ-product is a product of two established Mercer
kernels. Let the kernel be decomposed as:

K(w, x) = K1(w, x) · K2(w, x)

where:

• K1(w, x) = 〈w, x〉2

• K2(w, x) = 1
‖w−x‖2+ε

The set of Mercer kernels is closed under pointwise product. If K1 and K2 are Mercer kernels,
then for any set of points, their Gram matrices G1 and G2 are PSD. The Gram matrix for K
is the Hadamard (element-wise) product of G1 and G2. By the Schur product theorem [22], the
Hadamard product of two PSD matrices is also PSD. Thus, if we can prove that K1 and K2 are
Mercer kernels, their product K must also be a Mercer kernel.

a) K1(w, x) is a Mercer Kernel The linear kernel klin(w, x) = 〈w, x〉 is a known Mercer
kernel. As established, the set of Mercer kernels is closed under multiplication, so K1(w, x) =
klin(w, x) · klin(w, x) = 〈w, x〉2 is also a Mercer kernel.

b) K2(w, x) is a Mercer Kernel The kernel K2 is a translation-invariant kernel, as it depends
only on the difference z = w−x. Let k2(z) = (‖z‖2 +ε)−1. By Bochner’s theorem [54], a continuous
translation-invariant kernel is positive definite if and only if its Fourier transform is non-negative.

The function k2(z) can be represented as an integral of a positive function (a Gaussian) using the
identity 1

A =
∫∞

0 e−Atdt [53]:

k2(z) = 1
‖z‖2 + ε

=
∫ ∞

0
e−(‖z‖2+ε)tdt

=
∫ ∞

0
e−εte−t‖z‖2

dt
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The term e−t‖z‖2 is proportional to the un-normalized density of a zero-mean Gaussian with variance
σ2 = 1/(2t). The Fourier transform of a Gaussian is a Gaussian, which is always non-negative. Since
e−εt is also non-negative for t ≥ 0, the Fourier transform of k2(z) is an integral of non-negative
functions, and is therefore itself non-negative. Thus, K2 is a Mercer kernel.

Since both K1 and K2 are Mercer kernels, their product, K(w, x), is also a Mercer kernel.

Thus, the ⵟ-product satisfies the conditions of symmetry and positive semi-definiteness, and is
therefore a Mercer kernel.

A.3 Proof of Self-Regulation for the ⵟ-product

Theorem A.2 (The ⵟ-Product is Naturally Self-Regulating). The output of a ⵟ-product neuron is
bounded and converges to a finite value as the magnitude of the input vector approaches infinity.

Proof. Let the ⵟ-product be defined as:

ⵟ(w, x) = 〈w, x〉2

‖w − x‖2 + ε
(29)

where w is a fixed weight vector and x is the input vector.

We want to analyze the behavior of ⵟ(w, x) as the magnitude of the input, ‖x‖, approaches infinity.
We can represent any input vector x as x = k · u, where k = ‖x‖ is its magnitude and u is a unit
vector in the direction of x. The limit can be expressed as k → ∞.

Substituting x = ku into the equation and using the properties of the dot product and norm, we
get:

ⵟ(w, ku) = 〈w, ku〉2

‖w − ku‖2 + ε

= k2〈w, u〉2

‖w‖2 − 2〈w, ku〉 + ‖ku‖2 + ε

= k2〈w, u〉2

‖w‖2 − 2k〈w, u〉 + k2‖u‖2 + ε

Since u is a unit vector, ‖u‖2 = 1:

ⵟ(w, ku) = k2〈w, u〉2

‖w‖2 − 2k〈w, u〉 + k2 + ε
(30)

To find the limit as k → ∞, we divide the numerator and the denominator by the highest power of
k, which is k2:

lim
k→∞

ⵟ(w, ku) = lim
k→∞

〈w, u〉2

‖w‖2

k2 − 2〈w,u〉
k + 1 + ε

k2

(31)

As k → ∞, the terms with k in the denominator approach zero:

lim
k→∞

ⵟ(w, ku) = 〈w, u〉2

0 − 0 + 1 + 0 = 〈w, u〉2 (32)
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By the definition of the dot product, 〈w, u〉 = ‖w‖‖u‖ cos θ = ‖w‖ cos θ, where θ is the angle
between w and u (the direction of x).

Therefore, the limit is:
lim

‖x‖→∞
ⵟ(w, x) = (‖w‖ cos θ)2 = ‖w‖2 cos2 θ (33)

Since cos2 θ is always between 0 and 1, the output of the ⵟ-product is bounded by 0 ≤ ⵟ(w, x) ≤
‖w‖2. The limit is a finite value that depends only on the squared magnitude of the weight
vector and the squared cosine of the angle between the weight and input vectors. This proves
that the kernel is naturally self-regulating and does not diverge, even for inputs of arbitrarily large
magnitude.

A.4 Addressing Internal Covariate Shift

Theorem A.3 (Asymptotic Independence of Score Statistics). Let a = ⵟ(w, x) be the score of a
neuron for an input x. Consider a mini-batch of inputs B = {x1, . . . , xN }, where each input is
represented as xi = kiui with magnitude ki = ‖xi‖ and direction ui. Let µB(a) and σ2

B(a) denote
the empirical mean and variance of the scores over the mini-batch. In the limit as ki → ∞ for all
i ∈ {1, . . . , N}, the mean and variance of the scores converge to values that are independent of the
magnitudes ki:

lim
k1,...,kN →∞

µB(a) = ‖w‖2Eu∈U [cos2 θ(w, u)]

lim
k1,...,kN →∞

σ2
B(a) = ‖w‖4Varu∈U [cos2 θ(w, u)]

where U = {u1, . . . , uN } is the set of direction vectors and the expectation and variance are taken
over this set. This demonstrates that the scores statistics are asymptotically decoupled from input
magnitudes, thus mitigating internal covariate shift.

Proof. Let a neuron in a neural network layer be defined by the ⵟ-product kernel, a = ⵟ(w, x),
where w is the weight vector and x is the input vector from the previous layer. Internal Covariate
Shift (ICS) refers to the change in the distribution of the input x during training, which in turn
causes undesirable shifts in the distribution of the score a. We will demonstrate that the statistical
moments of the score a are asymptotically independent of the input magnitude ‖x‖, thus mitigating
ICS.

From the proof in Section A.3, we have established the asymptotic behavior of the ⵟ-product for
an input x = ku where k = ‖x‖:

lim
k→∞

ⵟ(w, ku) = ‖w‖2 cos2 θ (34)

where θ is the angle between the weight vector w and the input direction vector u. For inputs with
large magnitudes, which are a primary concern for training stability, the score can be approximated
as:

ⵟ(w, x) ≈ ‖w‖2 cos2 θ (35)
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Consider a mini-batch of N inputs, B = {x1, . . . , xN }. The corresponding score are ai = ⵟ(w, xi).
The empirical mean of the scores over this mini-batch is:

µB(a) = 1
N

N∑
i=1

ai (36)

Assuming the inputs in the mini-batch have sufficiently large magnitudes, we can substitute the
asymptotic approximation:

µB(a) ≈ 1
N

N∑
i=1

‖w‖2 cos2 θi = ‖w‖2 · 1
N

N∑
i=1

cos2 θi (37)

This can be expressed in terms of the empirical expectation over the mini-batch:

µB(a) ≈ ‖w‖2Ex∈B[cos2 θ(w, x)] (38)

Similarly, the empirical variance of the scores is:

σ2
B(a) = 1

N

N∑
i=1

(ai − µB(a))2 (39)

Using the same approximation, the variance becomes:

σ2
B(a) ≈ Ex∈B[(‖w‖2 cos2 θ − ‖w‖2Ex∈B[cos2 θ])2] (40)

= ‖w‖4Ex∈B[(cos2 θ − Ex∈B[cos2 θ])2] (41)
= ‖w‖4 (Ex∈B[cos4 θ] − (Ex∈B[cos2 θ])2) (42)

Crucially, both the empirical mean and variance of the scores are, in the large-magnitude limit,
functions of the weight vector’s magnitude ‖w‖ and the statistics of the angle θ between the weights
and the inputs. They are independent of the input magnitudes ‖xi‖.

During training, while the distribution of x (and thus the distribution of angles θi) and the weight
vector w evolve, the primary source of instability associated with ICS, namely, drastic fluctuations
in the magnitudes of layer inputs, is filtered out. The evolution of the score distribution is governed
by the more gradual changes in the learned weight vector and the angular structure of the data,
rather than the raw input scales. This decoupling of score statistics from input magnitudes provides
inherent stabilization, thus mitigating internal covariate shift.

A.5 Proof of Stable Learning for the ⵟ-product

Theorem A.4 (The ⵟ-Product Ensures Stable Learning). The gradient of the ⵟ-product with
respect to its input, ∇xⵟ(w, x), approaches zero as the input vector x moves infinitely far from the
weight vector w.

Proof. We aim to prove that the learning signal, represented by the gradient of the ⵟ-product with
respect to the input x, diminishes for inputs that are distant from the learned weight vector w.
This ensures that outliers do not cause large, destabilizing updates.
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The ⵟ-product is defined as:

ⵟ(w, x) = 〈w, x〉2

‖w − x‖2 + ε
= N(x)

D(x)

where N(x) = 〈w, x〉2 and D(x) = ‖w − x‖2 + ε.

Using the quotient rule for vector calculus, the gradient ∇xⵟ is:

∇xⵟ = (∇xN)D − N(∇xD)
D2

First, we compute the gradients of the numerator N(x) and the denominator D(x):

1. Gradient of the Numerator

N(x) = (wT x)2

∇xN(x) = 2(wT x) · ∇x(wT x) = 2〈w, x〉w

2. Gradient of the Denominator

D(x) = ‖w − x‖2 + ε = (w − x)T (w − x) + ε

∇xD(x) = 2(w − x) · (−1) = −2(w − x) = 2(x − w)

Substituting these into the quotient rule expression:

∇xⵟ = (2〈w, x〉w)(‖w − x‖2 + ε) − (〈w, x〉2)(2(x − w))
(‖w − x‖2 + ε)2

To analyze the behavior for distant inputs, we examine the limit as ‖x‖ → ∞. Let x = ku, where
k = ‖x‖ and u is a unit vector.

As k → ∞:

• 〈w, x〉 = k〈w, u〉 ∼ O(k)

• ‖w − x‖2 = ‖w‖2 − 2k〈w, u〉 + k2 ∼ O(k2)

Let’s analyze the order of magnitude for the terms in the gradient’s numerator:

• First term: (2〈w, x〉w)(‖w − x‖2 + ε) ∼ O(k) · O(k2) = O(k3)

• Second term: (〈w, x〉2)(2(x − w)) ∼ O(k2) · O(k) = O(k3)

The numerator as a whole is of order O(k3).

The denominator is (‖w − x‖2 + ε)2 ∼ (O(k2))2 = O(k4).
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Therefore, the magnitude of the gradient behaves as:

‖∇xⵟ‖ ∼ O(k3)
O(k4) = O

(
1
k

)

As k = ‖x‖ → ∞, the magnitude of the gradient approaches zero:

lim
‖x‖→∞

‖∇xⵟ(w, x)‖ = 0

This proves that for inputs x that are very far from the weight vector w, the gradient becomes
vanishingly small. The learning process is therefore stable, as distant outliers will not exert a
significant influence on the weight updates.

A.6 Proof of Universal Approximation Theorem for ⵟ-Product Networks

Theorem A.5 (Universal Approximation Theorem for NMNs). Let C(K) be the space of continuous
functions on a compact set K ⊂ Rd. A single-hidden-layer Neural-Matter Network (NMN) with
ⵟ-product activation functions can approximate any function f ∈ C(K) to any desired precision.
That is, for any f ∈ C(K) and any δ > 0, there exists an NMN function g(x) =

∑N
i=1 ciⵟ(wi, x)

such that supx∈K |f(x) − g(x)| < δ.

Proof. The proof relies on the theory of universal kernels. A continuous kernel K on a compact
set X is defined as universal if its associated Reproducing Kernel Hilbert Space (RKHS), HK , is
dense in the space of continuous functions C(X ) with respect to the uniform norm. The span of
functions of the form g(x) =

∑N
i=1 ciK(wi, x) is dense in HK . Therefore, if the ⵟ-product kernel

is universal, the set of NMN functions is dense in C(K), which proves the theorem.

A key result from kernel theory [40] states that the product of two universal kernels is also universal.
We have previously shown in Section A.2 that the ⵟ-product kernel K can be expressed as the
pointwise product of two kernels:

K(w, x) = K1(w, x) · K2(w, x)

where:

• K1(w, x) = 〈w, x〉2 (the squared polynomial kernel)

• K2(w, x) = (‖w − x‖2 + ε)−1 (a translation-invariant kernel)

We will now show that both K1 and K2 are universal kernels on any compact set K ⊂ Rd.

1. K1 is a Universal Kernel

The polynomial kernel kp(w, x) = (〈w, x〉+c)p is known to be universal for any p ≥ 1 and c > 0 [40].
Our kernel K1 is a specific instance of the polynomial kernel family and is also universal on any
compact subset of Rd.
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2. K2 is a Universal Kernel

A sufficient condition for a continuous, translation-invariant kernel k(z) (where z = w − x) to be
universal is that its Fourier transform must be strictly positive almost everywhere [54]. In the proof
of Mercer’s condition (Section A.2), we showed that K2 has a non-negative Fourier transform via
its integral representation:

K2(w, x) =
∫ ∞

0
e−εte−t‖w−x‖2

dt

The integrand is a strictly positive function for all t ≥ 0. The integral of a strictly positive function
is strictly positive. Therefore, the Fourier transform of K2 is strictly positive everywhere, which is
a stronger condition than required. Thus, K2 is a universal kernel.

Since both K1 and K2 are universal kernels, their product, the ⵟ-product kernel K(w, x), is also
universal. This implies that the span of functions generated by the NMN is dense in C(K).

Therefore, for any continuous function f ∈ C(K) and any δ > 0, there exists an NMN function
g(x) such that supx∈K |f(x) − g(x)| < δ, which completes the proof.

A.7 Information-Geometric Foundations of the ⵟ-Product

A.7.1 Definition and Geometric Interpretation

We consider probability distributions in the simplex ∆n−1 = {p ∈ Rn
≥0 :

∑n
i=1 pi = 1}. While

information geometry traditionally employs the Fisher metric, we establish a novel connection to
Euclidean geometry through the ⵟ-product.
Definition A.1 (ⵟ-Product: Geometric Similarity Measure). For distinct distributions p, q ∈
∆n−1, the ⵟ-product is defined as:

ⵟ(p, q) := (p · q)2

‖p − q‖2
2

where:

• p · q =
∑n

i=1 piqi measures distributional alignment

• ‖p − q‖2
2 =

∑n
i=1(pi − qi)2 quantifies Euclidean dissimilarity

This ratio captures the tension between distributional agreement and geometric separation.
Remark A.6 (Singularity and Invariance Properties). When p = q, we define ⵟ(p, q) := ∞ via
the limit:

lim
q→p

ⵟ(p, q) = ∞

reflecting maximal self-similarity. The ⵟ-product exhibits two key properties:

1. Symmetry: ⵟ(p, q) = ⵟ(q, p)

2. Scale Invariance: Invariant under index permutation
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A.7.2 Extremal Similarity Theorems

Theorem A.7 (Minimal Similarity and Statistical Orthogonality). For distinct p, q ∈ ∆n−1:

ⵟ(p, q) = 0 ⇐⇒ supp(p) ∩ supp(q) = ∅

Moreover, this condition implies information-theoretic divergence:

KL(p‖q) = ∞, KL(q‖p) = ∞, H(p, q) = ∞

Proof. (⇒) Assume ⵟ(p, q) = 0. Since p 6= q, ‖p − q‖2
2 > 0. Thus (p · q)2 = 0 ⇒

∑
piqi = 0. By

non-negativity of probabilities, piqi = 0 ∀i, hence supp(p) ∩ supp(q) = ∅.

(⇐) Disjoint supports imply ∀i : (pi > 0 ⇒ qi = 0) and vice versa. Thus p · q = 0, so ⵟ(p, q) = 0.

The KL divergence KL(p‖q) contains terms log(pi/qi) where pi > 0 and qi = 0, causing divergence.
Similar reasoning applies to KL(q‖p) and cross-entropy H(p, q) [13].

Theorem A.8 (Maximal Similarity and Distributional Identity). For p, q ∈ ∆n−1:

ⵟ(p, q) = ∞ ⇐⇒ p = q

When satisfied, information-theoretic consistency holds:

KL(p‖q) = 0 and H(p, q) = H(p)

Proof. (⇒) Suppose ⵟ(p, q) → ∞. By Cauchy-Schwarz [22], p · q ≤ ‖p‖2‖q‖2 ≤ 1. Since the
numerator is bounded, ‖p − q‖2

2 → 0, implying p = q.

(⇐) For p = q, consider q(k) → p. Then:

p · q(k) → ‖p‖2
2 ≥ 1

n > 0 (since ‖p‖2
2 ≥ 1

n by Cauchy-Schwarz)

while ‖p − q(k)‖2
2 → 0, so ⵟ(p, q(k)) → ∞.

When p = q, log(pi/qi) = 0 for all i, so KL(p‖q) = 0. Cross-entropy reduces to entropy when
distributions are identical.

Remark A.9 (Duality of Orthogonality Concepts). The ⵟ-product unifies three distinct notions of
orthogonality:

Euclidean: p ⊥ q ⇐⇒ p · q = 0
Combinatorial: supp(p) ∩ supp(q) = ∅

Information-Theoretic: KL(p‖q) = ∞

Theorem A.7 establishes their equivalence through ⵟ(p, q) = 0. This contrasts with Fisher-based
orthogonality, which depends on manifold curvature.
Remark A.10 (Geometric-Information Duality). The ⵟ-product creates a bridge between geometric
and probabilistic perspectives:
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Euclidean Space

Combinatorial Support

Information Theory

p · q = 0

Theorem A.7

A.8 Diagrams
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Figure 10: The core Scaled Dot-Product Attention calculation.
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Input Embeddings
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Figure 11: The Multi-Head Attention mechanism, which runs attention in parallel.
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Input
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Output
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Figure 12: The position-wise Feed-Forward Network (MLP).
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Input
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Multi-Head
Attention

+

LayerNorm

Feed-Forward
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+

LayerNorm

Output
(n, dmodel)

Figure 13: The complete Encoder block, showing how Multi-Head Attention and the FFN are
combined using residual connections and layer normalization.
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Input
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Conv 3x3

BatchNorm

ReLU

Conv 3x3

BatchNorm

+

ReLU

Output
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Figure 14: A standard ResNet ”Basic Block” with a residual (skip) connection. This concept of
bypassing layers is a precursor to the residual connections in Transformers.
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Input
(H, W, n)

YatConv n → m

Linear Conv m → m

+

Output
(H, W, m)

Proj n → m

Figure 15: A CNMN Residual Block as used in AetherResNet: a YatConv layer (n → m) followed by
a linear Conv (m → m), with no activation functions or normalization layers. The skip connection
includes a projection if n 6= m.
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Input
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Yat-MLP Block

+

Output
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Figure 16: A YatFormer transformer block as used in AetherGPT: Yat-Attention followed by a Yat-
MLP block, each with residual connections. No projection after attention, and no normalization
layers.
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Input

(n, d)

YatNMN d → d

Linear d → d

Output

(n, d)

Figure 17: The Yat-MLP block as used in AetherGPT: a YatNMN layer (d → d) followed by a
linear layer (d → d), with no expansion of the hidden dimension.
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Figure 18: The Yat-Attention block as used in AetherGPT: input embeddings are projected to
queries, keys, and values; Yat-product similarity is computed between queries and keys; softermax
is applied; and the output is the weighted sum of values. No projection layer after attention.
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