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Accurate, real-time estimation of atmospheric visibility is a critical yet challenging task in
aviation safety. While deep learning has shown promise, unimodal approaches relying solely
on RGB imagery often fail to capture the complexity of atmospheric conditions, leading to
limitations in reliability and accuracy. This paper introduces SeeNN, a novel multimodal deep
learning framework designed for robust, long-range, in-flight visibility estimation. SeeNN
integrates information from five diverse modalities: RGB imagery, depth maps, normal surface
maps, edge maps, and entropy maps. To facilitate the development and evaluation of such
models, we also present SeeSet V1, a new, comprehensive, and publicly available benchmark
dataset featuring a wide range of altitudes, land covers, and visibility conditions. Our extensive
experiments demonstrate the superiority of the multimodal approach. The SeeNN framework
achieves a classification accuracy of over 97%, a significant improvement upon the 87.92%
accuracy of a baseline unimodal RGB model. This work underscores the substantial potential
of multimodal fusion to enhance the reliability of automated visibility estimation systems,
representing a key advancement toward improving safety and operational efficiency in aviation
and other domains where visibility is a critical factor.

I. Introduction

Atmospheric visibility is a critical determinant of aviation safety, directly influencing a pilot’s capacity for navigation
and critical decision-making [1H6]. The tragic 2020 accident involving Kobe Bryant, which the National Transportation
Safety Board (NTSB) attributed to the pilot’s decision to continue flight under Visual Flight Rules (VFR) into Instrument
Meteorological Conditions (IMC), starkly underscores the severe consequences of impaired visibility. This incident
highlights the urgent and unmet need for accurate, real-time, in-flight visibility estimation technologies.

The development of automated visibility estimation systems for aviation is fraught with challenges. Pilots frequently
rely on their familiarity with local landmarks and terrain, a dependency that complicates the creation of automated
systems requiring broad geographical adaptability [7]. Moreover, the dynamic nature of atmospheric conditions,
including fluctuating cloud cover and abrupt weather changes, necessitates solutions that are both robust and versatile.

While deep learning presents promising avenues for addressing complex problems, unimodal approaches, particularly
those reliant on RGB imagery, have demonstrated significant limitations in the context of visibility estimation. These
models are often susceptible to overfitting, exhibit poor generalization to new environments, and are affected by inherent
biases in the training data. RGB data alone is frequently insufficient for capturing the nuanced characteristics of the
atmosphere or for mitigating confounding factors such as glare, low-light conditions, or rapid meteorological shifts
[8H16].

To overcome these obstacles, multimodal deep learning has emerged as a demonstrably superior paradigm. By
integrating data from diverse sources, these techniques augment the capabilities of the model and address the intrinsic
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shortcomings of single-modality systems [[17H20]]. Each modality contributes unique information, fostering a more
holistic and veridical perception of the environment, which in turn leads to more precise and reliable predictions. The
value of multimodal deep learning in visibility estimation is increasingly recognized, as evidenced by a growing body of
literature [9, [21-29]]. As detailed in tableE], the fusion of multiple data streams enhances the robustness, safety, and
reliability of deep learning systems, rendering them suitable for mission-critical real-world applications [30-32].

Table 1 Modalities Employed in On-Ground Atmospheric Visibility Estimation Literature

Modality [25] [33] [24] [26] [27] [28] [29]
Depth Map X

Transmission Map X X X

Disparity Map X

Entropy X X
Edge Detection X

Contrast Computation X

Koschmieder Law X X
FFT X

Spectral Filter X

Dark Channel Prior X X X

Despite the progress in ground-based visibility estimation, a significant gap persists in addressing in-flight scenarios.
This deficiency is primarily attributable to the scarcity of comprehensive in-flight visibility datasets, which are essential
for training and validating deep learning models in realistic aviation contexts [9]]. Existing datasets are often constrained
to short-range, ground-level visibility and lack the necessary diversity in scenery and land cover. This limitation severely
impedes the development of universally applicable and robust in-flight visibility estimation models.

This paper introduces a multimodal framework for training visibility estimation systems, with the goal of improving
the accuracy, trustworthiness, and robustness of deep learning models for atmospheric visibility assessment. We
demonstrate that by integrating diverse data modalities, the limitations of unimodal RGB approaches can be substantially
mitigated, thereby advancing the development of versatile and reliable deep learning applications in environmentally
dynamic fields. Furthermore, we address the critical dataset gap by introducing a comprehensive, publicly available
dataset that captures visibility degradation across a wide range of land covers and altitudes.

The primary contributions of this work are twofold:

* A meticulously curated dataset, SeeSet V1, for the benchmarking of visibility estimation, dehazing, and visibility
restoration algorithms [[34)]. This dataset, which is publicly available at https://github.com/skywolfmo/
seeNN-paper, was generated using the X-Plane 11 flight simulator. It includes a wide array of images captured
under diverse visibility conditions and at various altitudes, from ground level to 2,000 feet Above Ground Level
(AGL). Its comprehensiveness provides a robust foundation for the training and evaluation of advanced in-flight
visibility estimation and restoration techniques.

* A multimodal fusion framework for atmospheric visibility estimation. This framework is employed to train and
validate deep learning models, with results demonstrating the superior accuracy of the multimodal approach when
compared to single-modality RGB models.

I1. Methodology
This section details the methodology employed in this study. We introduce a novel framework that leverages multiple
modalities for the development of atmospheric visibility estimation solutions. A key component of this work is the
construction of a new dataset, SeeSet V1, which encompasses both ground-level and elevated altitude conditions,
addressing a critical gap in existing resources.


https://github.com/skywolfmo/seeNN-paper
https://github.com/skywolfmo/seeNN-paper

A. SeeSet V1 Dataset
To address the limitations of existing datasets and to encompass a broader range of real-world operational scenarios,
we have developed a novel aerial imagery dataset designated SeeSet V1. This dataset has been meticulously curated to
include dynamic views from multiple locations, capturing scenery from both ground-based and aerial perspectives.
This section provides a comprehensive description of the data collection and labeling procedures (section[[LLA.T)). In
section [[I.A.2] we detail the techniques utilized to generate the supplementary image modalities.

1. Dataset Collection Process

The generation of our synthetic dataset was accomplished using an FAA-approved flight simulator. The use of
this advanced simulator enabled the systematic and controlled acquisition of images, showcasing a diverse range of
viewpoints and visibility degradation levels. The data collection process, as depicted in Figure[I] commenced at ground
level. Visibility was incrementally increased in discrete steps, up to a maximum of 100 miles. Upon reaching this limit,
the viewpoint’s altitude was elevated, and the visibility was reset to zero. This iterative procedure was continued up to a
maximum altitude of 2,000 feet Above Ground Level (AGL).
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Fig.1 Automatic Dataset Collection Process using X-Plane 11

The collected images are automatically labeled into five discrete bins, each tailored to specific FAA requirements. This
categorization is based on visibility conditions and regulations relevant to both ground-based and aerial environments.
The designated bins serve as the basis for the five labels utilized in training our DL models. We report the classes (bins)
specifications and the corresponding counts in table [2]

Table 2 Visibility Categories and Images Count

Category Visibility in miles  Visibility in meters Count
4 > 5 miles > 8046.72m 67002
3 3 to 5 miles 4828.03m to 8046.72m 19584
2 1 to 3 miles 1609.34m to 4828.03m 19648
1 0.5 to 1 mile 804.672m to 1609.34m 4928
0 < 0.5 mile < 804.672m 4938
Total 116100

2. Modalities

Monocular Depth Estimation:

Monocular depth maps were extracted using the Omnidata toolkit [35, 36]. This toolkit provides a scalable and
comprehensive method for depth estimation, which is essential for understanding the spatial arrangement of a scene.
The resulting depth maps furnish a pixel-wise measurement of distance from the viewpoint, thereby facilitating an
accurate representation of the three-dimensional scene structure.

It is important to note a specific limitation of the depth estimation models employed. The training methodology for
these models involves masking the sky and exclusively considering the ground for depth estimation. This may present
challenges for certain images within our dataset that were captured at varying altitudes.

Normal Surface Estimation:


https://www.faa.gov/air_traffic/publications/atpubs/aim_html/
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Fig. 2 The impact of visibility on the multiple modalities for the 6N7 Sealane 01 View. Each row shows one
modality: RGB, edge map, entropy map, FFT magnitude, and dark channel prior. Each column refers to a
visibility bin.
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Fig.3 Impact of Visibility Degradation on Edge Density (a), Entropy map (b), Dark Channel Prior (c), and FFT
Magnitude (d) vs Visibility in Miles

In addition to depth maps, the Omnidata toolkit was also utilized for normal surface estimation [35]]. This modality
provides information regarding the orientation of surfaces within the image, which is crucial for discerning the geometric
properties of the scene. In contrast to the depth estimation model, the normal surface estimator considers both sky and
ground details.

Entropy Map:

An image entropy map is incorporated as a modality to enhance the model’s sensitivity to variations in visibility,
particularly under low-visibility conditions. The entropy map quantifies the amount of information, or uncertainty,
present in different regions of an image.

Edge Detection:

Edge detection serves as another key modality, particularly well-suited for long-range visibility scenarios where the
delineation of objects and scene boundaries is critical. By highlighting the contours and edges within an image, this
modality aids in defining shapes and structures, thereby providing a clearer distinction between different objects and
features in the scene.

In Figures 2] and 3] we illustrate the impact of visibility degradation on various modalities for the same scene. Each
row displays a single modality, while each column corresponds to a specific visibility bin.

B. Fusing Modalities

In the literature, numerous methods have been proposed for the fusion of different modalities within multi-stream
networks [37H39]. These methods range from the simple concatenation of input streams in the input space to more
complex fusion strategies at various levels of the model architecture.

Early fusion [40] involves concatenating or otherwise preprocessing all input streams in the input space. The
combined data is then fed into a single feature extractor. While this method is the simplest to implement, it is often
limited, as the feature extractor may learn to disregard some modalities, with the feature representation being dominated
by a single modality.

Intermediate fusion [40], a widely adopted approach, involves feeding the different modalities into separate encoder
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Fig.4 (a) SeeNN Framework: The framework first extracts features (entropy map, surface normals map, edge
map, depth map) from the input image. Separate encoders ¢,,(-) (¢,,(-) denotes modality encoders) process
these features followed by a projection head (b), followed by fusion of these features through a Connector and
prediction via a classifier §. (b) Projection Head: The input vector is transformed by an MLP (Multi-Layer
Perceptron) with a non-linear activation function (GeLU) and dropout for regularization.

layers before fusing the extracted embeddings. In this paradigm, the model learns to extract salient features from each
modality before they are combined, thereby preventing any single modality from dominating the feature space. A
significant advantage of this architecture is its compatibility with recent advancements in representation learning, such
as contrastive learning or unsupervised representation learning, where fusion occurs between the encoder and decoder
layers or at the initial stages of processing.

Late fusion [40] represents another fusion strategy, wherein each modality is passed through its own complete
network until the decision layer (e.g., a classifier). Fusion is then performed at the decision level, either through a voting
mechanism between the different models or by averaging their respective outputs.

1. Multimodal Fusion Methods

Various techniques for multimodal fusion have been proposed in the literature, including Tensor Fusion [41]],
Low-Rank Fusion [42], and attention mechanisms [43]]. Although each method possesses its own set of advantages and
disadvantages, self-attention has emerged as a foundational component for many recent large-scale models. While it
typically requires a larger volume of training data, its computational cost is significantly lower compared to methods
such as tensor fusion.

2. The SeeNN Multimodal Fusion Framework

The proposed SeeNN framework, illustrated in Figure 4] integrates multimodal deep learning techniques to process
images concurrently with multiple derived modalities.

Initially, each input RGB image / undergoes a series of transformations via modality estimators to generate a depth
map E;(I), a normal surface map E, ([), an edge detection map E.(I), and an entropy map E,(I). Each of these



modalities captures distinct characteristics of the input, providing a diverse set of perspectives on the image’s content.

Let m denote a specific modality (i.e., generated depth map depth, normal surface normal, entropy map entropy,
edge map edge, and RGB image rgb). We employ different backbone models @, (-) for each modality input X,,,. In this
work, we utilize DenseNet121 [44] as the architecture for all ®,,,. The resulting embedding from each encoder is fed to
a projection head P,,,, which consists of a Multi-Layer Perceptron (MLP) with a non-linear activation function (GeLU)
and dropout for regularization. This is followed by a layer normalization step, which is crucial for aligning the feature
representations and mitigating the risk of dominance by any single modality. This process yields a feature vector F,,.

This procedure is applied to the RGB image X, g5, depth map Xy 5, normal surface map X;,o,mai, €ntropy map
Xentropy- and edge map X, gg. to obtain the feature vectors Fygp, Faepths Frormats Fentropy> and Feqge, respectively.

Following the projection heads, the SeeNN framework concatenates these embeddings into a single, comprehensive
feature vector F'. This concatenation is represented as F' = [Fygb, Faepth’ Fnormats Fentropy; Fedge]. This composite
vector is then fed to a connector module, C, which is responsible for fusing these modalities.

Finally, an MLP classifier head is applied to the fused feature vector to obtain the final prediction, y.

For the connector module, we explored two primary methods. The first method involves passing the flattened feature
vector F directly to the MLP, representing a simple yet effective fusion of the different features. The second method
utilizes an attention block to perform self-attention on F, followed by flattening the output and feeding it to the MLP
head.

3. Experimental Setup

For this study, we utilized our custom-collected dataset, SeeSet V1 , which comprises 320 distinct views
collected across 20 locations with varying land covers, each with visibility ranging from 0 to 100 miles. The dataset was
partitioned into training and validation subsets using a holdout approach. Specifically, all views from a predefined set of
locations were reserved for the validation set, ensuring that the model does not overfit to specific sceneries and instead
learns to estimate visibility based on image degradation [§]]. This resulted in a training set of 100, 350 instances and a
validation set of 15,750 instances. All images in the dataset were preprocessed to an input resolution of 224 x 224
pixels.

We employed the Omnidata models to preprocess the RGB images and extract the estimated Depth Map and Normal
Surface [35]. This approach, based on the DPT-Hybrid architecture [36], is analogous to methods used in the literature
to generate pseudo-labels from RGB data for pre-training multimodal models [45} 46].

For the other modalities, namely the edge map and the entropy map, the RGB images were processed through
handcrafted estimators, as depicted in Figure 4]

All models were trained for 100 epochs using the Adam optimizer with a learning rate of 0.001. A batch size of 32
was used for all training procedures.

I1I. Results and Discussion
This section presents the experimental results of our study. We begin by describing the performance of a unimodal
RGB-based model, followed by a detailed analysis of the multimodal SeeNN framework. The discussion encompasses a
comparative analysis of different fusion strategies, an examination of model performance through confusion matrices,
and a consideration of computational costs and dataset limitations.

A. Unimodal Model Performance

A baseline model was established using only the RGB modality. This unimodal model achieved an overall accuracy
of 87.92% on the validation set. This performance, while reasonable, highlights the inherent limitations of relying on a
single data source, particularly when tested on previously unseen views. To ensure the robustness of our evaluation and
prevent data leakage, we employed a strict holdout validation strategy, as described in the Experimental Setup, where
entire geographical locations were withheld from the training set. This rigorous approach prevents the model from
overfitting to specific sceneries and provides a more realistic assessment of its generalization capabilities.

B. Multimodal Model Performance

In contrast to the unimodal baseline, the multimodal models developed within the SeeNN framework demonstrated
a significant improvement in performance. As shown in Table [3]and Figure[5] the fusion of multiple modalities resulted
in a substantial increase in prediction accuracy, with gains of up to 10 percentage points.



Table 3 Ablation study comparing the performance of different modality combinations and fusion connectors.
The highest accuracy for each connector type is highlighted in bold.

Connector RGB Entropy Edge Depth Normal Surface # Trainable Params. Val. Acc. (%)
Unimodal v ™ 87.92
v v 14M 96.40
v v 14M 96.53
Concatenate v v 14M 97.57
v v v 21M 97.14
v v v v v 38M 96.30
v v 14M 96.86
Self-Attention Y Y 14M 96.31
v v v 21M 97.47
v v v v v 38M 97.63

For instance, a model combining RGB and Depth modalities, using a simple concatenation connector, achieved an
accuracy of 97.57%. The highest performing model, which fused all five modalities (RGB, Entropy, Edge, Depth, and
Normal Surface) using a self-attention connector, reached an impressive validation accuracy of 97.63%. These results
strongly support the hypothesis that integrating diverse data sources enables the model to form a more comprehensive
and robust understanding of the atmospheric conditions, leading to more accurate visibility estimations.

C. Analysis of Misclassifications

The confusion matrices presented in Figure [5| provide further insight into the performance of the top-performing
multimodal models. While the overall accuracy is high, the models exhibit some difficulty in distinguishing between
adjacent visibility categories. Specifically, there is a tendency to misclassify instances of "Class 3" (3 to 5 miles
visibility) as "Class 4" (>= 5 miles visibility). This suggests that the visual cues differentiating these two classes are
subtle and challenging for the models to discern.

Interestingly, the combination of RGB and Depth modalities yielded improved performance for this specific class,
indicating that depth information is particularly valuable for resolving ambiguity in this visibility range. Future work
could explore the integration of additional modalities or the development of more sophisticated fusion mechanisms to
address this specific challenge.

D. Discussion

1. Computational Cost and Deployment Considerations

A critical consideration in the practical application of these models is the trade-off between performance and
computational cost. While the model that fused all available modalities achieved the highest accuracy, it also has the
highest computational overhead, requiring the execution of multiple modality estimators and backbone networks. When
deploying such models, particularly on resource-constrained hardware such as embedded devices, it is essential to
consider these limitations. The results suggest that a carefully selected subset of modalities (e.g., RGB and Depth) can
provide a favorable balance between accuracy and efficiency.

2. Dataset Limitations and Future Directions

While the SeeSet V1 dataset addresses a significant gap in the availability of public, multi-view datasets for
atmospheric visibility research, it has certain limitations. The diversity of landscapes and land covers could be expanded
to enhance the model’s generalizability. Future work should focus on enriching the dataset using the latest generation of
flight simulators (e.g., Microsoft Flight Simulator, X-Plane 12), which offer near-photorealistic rendering and more
sophisticated atmospheric models.
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Further research should also explore advanced pre-training techniques to improve the quality of the learned feature
representations. Many state-of-the-art multimodal systems leverage self-supervised or unsupervised pre-training on
large-scale datasets, which has been shown to improve downstream task performance.

Finally, a deeper investigation into the impact of visibility degradation on the feature representations extracted by
different network architectures is warranted. A thorough understanding of this relationship is crucial for improving the
trustworthiness and reliability of these models in safety-critical, real-world applications.

IV. Conclusion

In this paper, we have presented a novel multimodal deep learning framework, SeeNN, for the estimation of
atmospheric visibility in challenging in-flight scenarios. Our work makes two primary contributions to the field.

First, we introduced the SeeNN framework, which effectively fuses information from RGB imagery, entropy maps,
edge maps, depth maps, and normal surface maps. Our extensive experimental results demonstrate that this multimodal
approach significantly outperforms traditional unimodal models that rely solely on RGB data. The superior performance
of SeeNN underscores the value of integrating diverse data modalities to overcome the inherent ambiguities and
limitations of single-source systems, thereby achieving more accurate and reliable visibility estimation.

Second, we have developed and released a comprehensive, open-source benchmark dataset for atmospheric visibility
estimation. This dataset, a key contribution of our work, is distinguished by its diversity, encompassing a wide range of
altitudes, land cover types, and visibility conditions. It provides a much-needed resource for the research community,
enabling the robust training, validation, and comparative evaluation of visibility estimation algorithms.

Our empirical results show that the proposed multimodal framework offers substantial improvements in estimation
accuracy over unimodal RGB methods. The release of our benchmark dataset addresses a critical gap in the field,
providing a standardized platform for future research and development. We anticipate that this resource will catalyze
further innovation in the domain, spurring the development of increasingly sophisticated multimodal deep learning
techniques for atmospheric visibility estimation.

Future research could explore several promising avenues, including the integration of additional sensor modalities,
the investigation of more advanced fusion architectures, and the application of our framework to related problems in
atmospheric science. Furthermore, the potential for leveraging transfer learning and domain adaptation techniques in
this context remains a compelling area for future investigation.

In conclusion, this work contributes to the growing body of research at the intersection of deep learning and
atmospheric science, offering both methodological advancements and a valuable resource to the research community.
As the field continues to evolve, we believe that multimodal approaches, such as the one presented in this paper, will
play an increasingly pivotal role in addressing complex environmental perception tasks, with far-reaching implications
for aviation safety and other domains.
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